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Abstract

We study the integrated WiFi/WiMAX networks where usersegaipped with dual-radio interfaces
that can connect to either a WiFi or a WiMAX network. Previoasearch on integrated heterogeneous
networks (e.g., WiFi/cellular) usually consider one natkvas the main, and the other as the auxiliary.
The performance of the integrated network is compared wigH'inain” network. The gain is apparently
due to the additional resources from the auxiliary netwbrkhis study, we are interested iimegration
gain that comes from the better utilization of the resousathar than the increase of the resource.
The heterogeneity of the two networks is the fundamentalmedor the integration gain. To quantify
it, we design a generic framework that supports differenfgpmance objectives. We focus on the
max-min throughput fairness in this work, and also brieflwerothe proportional fairness metric.
We first prove that it is NP-hard to achieve integral max-nfinotighput fairness, then propose a
heuristic algorithm, which provides 2-approximation te tiptimal fractional solution. Simulation results
demonstrate significant integration gain from three sajrnamely spatial multiplexing, multi-network
diversity, and multi-user diversity. For the proportioffi@kness metric, we derive the formulation and
propose a heuristic algorithm which shows satisfactorygoarance when compared with the optimal

solution.

Index Terms
WiFi, WIMAX, Heterogeneous network, Integration gain, MBrdness, Approximation algorithm.

I. INTRODUCTION

The IEEE 802.16 (WiMAX) is a promising technology due to itglhdata rate, wide coverage,

and built-in support for mobility and security. Given thermnt vast deployment of WiFi
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networks, the coexistence between WiFi and WIiMAX is inddiga Major companies such as
Intel and Motorola are promoting the integrated WiFi/WiMAMKterface to take advantage of
such scenario [10]. Users equipped with such interfacesassociate with a WiIMAX base
station (BS) or a WiFi access point (AP). Compared to the awerwhere users only connect
to WiFi networks, the benefit of the integrated network isiobs: we have additional spectrum
resource from the WiMAX network. However, a closer look sesfg that we may be able to reap
significant gain from the heterogeneity of these two netwankaddition to the extra resource. For
example, in a typical integrated WiFi/WiMAX network, a WiMABS may cover a service area
with up to hundreds of WiFi APs in it. In the WiFi network, usenay experience poor quality
of service (QoS) in some congested APs, while in some othex, A&pacity may not be fully
utilized. Similarly, in the WIMAX network, per-user throbgut could be low if the number
of WIMAX users is large. If users have the flexibility to switbetween WiFi and WiMAX
networks using the integrated interface, some WiFi users ssgitch from congested APs to
WIMAX, while some WIMAX users can switch to under-utilizedi® APs. Thus, the QoS in
both networks improve. We refer to this as spatial multiplexing gainin addition, a user may
have a low WiFi rate and a high WIMAX rate or vice versa. If treeuintelligently selects its
association, the network capacity improves, which is reféto asmulti-network diversity gain
Furthermore, multiple users could be switched from thefrent associated network to the other
one to improve the overall network performance. There sxast order to switch these users
following which the gain can be maximized. We refer to it asniulti-user diversity gainThese
three types of improvements, which will be discussed in nuetil later, come from network
heterogeneity and better utilization of the resource rdti@n the increase of the resource. This
observation motivates our work. Our objective is to idgnsifich an integration gain, which was
not addressed in existing work on integrated heterogeneetygork (e.g., WiFi/cellular).

Our contributions are as follows. First, we propose a genfamework to identify the
integration gain. The framework can serve different oliyest In this study, we focus on the
max-minthroughput fairness, and briefly cover tpeoportional throughput fairness. Second,
we prove that it is NP-hard to achieve integral max-min tiglquut fairness. We propose an
approximation algorithm which provides 2-approximatiorthie optimal fractional solution. The
algorithm is shown to achieve significant integration gaimd is easy to implement because the

computation and information exchange are distributed.tRerproportional fairness metric, we
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derive the formulation and propose a heuristic algorithnicivtshows satisfactory performance

when compared with the optimal solution.

Il. RELATED WORK

In cellular networks, macro/micro cellular architectusesimilar to WiFi/WiMAX architecture
in terms of spatial heterogeneity. Much work on macro/miarohitecture focuses on how to
perform optimal handoff [18]. The decision is mainly basedsignal strength. The association
policies considered in our work can also be viewed as hardiaffsions. But instead of signal
strength, we make the decision based on network performareteics, such as throughput
fairness. Other work focuses on the resource managementagatity analysis [7], [11]. In
general, micro-cells do not bring additional spectrum veses into the original “macro” network.
The capacity improvement comes from frequency reuse aetlig@nt allocation of the resource
between macro and micro-cells. In our work, we do not havdrobover spectrum allocation
between WiFi and WIMAX networks. Each network has its owncépan as well as users.
Our objective is to study the integration of the two (sepgraketworks. From the viewpoint of
either one of them, the other does bring additional resoasceell as its own users. But we are
interested in the integration gain, which is independenthef spectrum resource each network
has.

Integrated WiFi/cellular network architecture has alserbstudied. Usually cellular network
has a much smaller bandwidth than that of WiFi network. In tradsthe work, the cellular
network is considered as the main network, and WiFi as théliatyx Most research efforts
are put on the architecture design and QoS support of sushorie{17], [13]. Usually, the
performance of the integrated WiFi/cellular network is gared with the cellular network where
the gain is obvious due to additional resources.

There are a few recent works on the handoff and load balancingegrated WiFi/WiMAX
networks [4], [12]. But none of them explicitly studies therfprmance gain due to the hetero-
geneity of the two networks.

AP association in WiFi networks has been extensively stiidide association decision could
be based on the received signal strength, the existingctidafid on APs, or a combination of
several metrics [15], [2]. Bejerano et. al. [3] proved thiaisi NP-complete to achieve global

max-min throughput fairness under integral associatiamrobh They proposed approximation

September 6, 2010 DRAFT



TABLE |

NOTATIONS
Notations| Comments
M Number of WiFi APs
Nuyifi Number of users in the WiFi-only network
Nyimaz Number of users in the WiMAX-only network
N Number of users in the integrated network
NI Number of users in AR in the WiFi-only network
N; Number of users in AR under virtual AP association
(,7) The jth user in AP: under virtual AP association
T; Throughput of both AR and its members

L; Load of AP
Twimaz Throughput of WIMAX and its members
Limaz Load of WIMAX BS

Tij WiFi rate (i.e., average link capacity) of usgr j)

R;; WIMAX rate (i.e., average link capacity) of uséf, j)

Tij Fraction of user(z, j)'s traffic to be sent in WiFi networ
X Optimal fractional association from the LP

algorithms to guarantee the performance ratio to the optinaational association which is
the fairest association possible. Our problem can be vieaged special case of theirs (i.e.,
consider WIMAX BS as a special AP with a much larger transioissange to cover the whole
network). However, we exploit the special structure of theegrated WiFi/WiIMAX network,

and propose an algorithm that is simpler and with bettergperdnce. The algorithm is also
easier to implement because both its message exchange arabriiputation are distributed.
The heuristic algorithm in [3], on the other hand, requireseatral controller to gather global

information, perform the computation, and disseminatediesion to each user.

IIl. NETWORK MODEL AND INTEGRATION GAIN
A. Network Model

We consider a service area large enough to contain multiglei WPs. For example, In
Chicago, up to 256 APs can be found in 1/2 square mile subuabaa [14]. Each AP has a
limited transmission range, and only serves users witlsimahge. Neighboring APs may have
overlap in their coverage. We assume the whole service areavered by these APs. There

exists one WIMAX BS that also covers the whole area. It is a@aable assumption since a
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WIMAX BS can typically reach a distance up to tens of milesl APs and the BS directly
connect to the Internet. Each user is equipped with one Wi#iiorand one WIMAX radio.
Under the above coverage assumption, a user may hear onerer ARs through its WiFi
radio, and the BS through its WIMAX radio. It can choose tomext to a nearby AP, or the
WIMAX BS, or even both by utilizing two radios at the same tinfée useintegral association
to denote the first two cases because all traffic is sent on glesmadio. We usdractional
association to denote the last case because the user hdg tts $paffic on two active radios.
In principle, fractional association provides better parfance due to its flexibility. However,
technical difficulties exist in practice. First, the reaqunrent for the carrying device increases
due to the excessive power consumption and heat when twosrage active at the same time.
Second, the interference between the two co-located radinsot be ignored even if they are
operating on non-overlapping channels [19]. Last, prdt@omnplexity increases dramatically
due to traffic splitting and significant out-of-order pacletivery. Thus, we use the performance
under the fractional association as the benchmark and sha&dintegral association in practice.
We focus on the association decision between WiFi and WiMAvorks for each user. It
is itself a challenging problem to determine which AP to agse with among nearby APs if
a user decides to stay in the WiFi network. We assume thestsexirule to pre-determine an
AP. The pre-determination rule could be any load balanciggrahm in WLAN [15], [2] or
based on the received signal strength. Whenever the usieleddo switch to the WiFi network,
the WiFi radio always associates with the pre-determined @iPen a set of users, we can
determine the corresponding AP for each user following thedetermination rule. We call
such pre-determined user-AP mapping thetual AP associationwhich is independent of the
actual association. We ugeé j) to denote thejth user associated with APin the virtual AP
association. Since a user can only associate with a singlg:AP will be used to uniquely
identify a user. It can help simply the formulations we willepent later. It is obvious that
different pre-determination rules have different impacttbe system performance. A carefully
designed rule should lead to a better performance than amamdle. But the integration gain
will not be affected much as it is a relative performance mewWe will study it in more detail
in Section VI. We use;; to denote the fraction of us€f, j)’s traffic to be sent through its WiFi
radio, andl — z;; as the fraction of the traffic through its WiMAX radio. We havg € [0,1] in
fractional association, and; € {0,1} in integral association. So trectual association of user
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(i,7) is determined by;;.

We assume that the transmission in one AP does not interfighetivat in adjacent APs. This
can be achieved by assigning non-overlapping channels @ig 802.11b and 12 in 802.11a)
to neighboring APs. WIMAX BS does not interfere with APs besa it usually operates on a
different frequency band. We usg; to denote the WiFi rate (i.e., link capacity) observed by
user (i, j) in the long run, andR;; the WiMAX rate. For example, a user may observe a WiFi
rate of 54Mbps (e.g., 802.11a) under perfect channel condior lower than 54Mbps under
significant path loss.

Within each AP and WIMAX BS, we assume the network is satarad®d the bandwidth is
fairly shared among all associated users. Under saturated tvedficote that WiFi MAC tries to
evenly divides the access opportunity among its associgedin the long term [6], [5], which
leads to roughly the same throughput for each user. We ctiroughput shareOn the other
hand, WIMAX BS is fully responsible for allocating bandwidtor all users, in both the uplink
and the downlink [1]. But the standard does not specify theedualing algorithm, which is left
for the system designer and developer to decide [9]. ThexefiMAX MAC can choose to
achieve different bandwidth share objectives, includmgughput share as WiFi MAC does. So
in our work, we assume throughput share in an AP or the BS,users of the same AP or BS
obtain the same throughput. We will consider other schadutiolicies of WIMAX in future
work. We useT; to denote the throughput of each user in AFFor abbreviation, we also call it
the throughput of AR. Assume we havéV; users in APi under virtual AP association. Denote
t;; as the proportion of time for us€g, j) in AP i. We haver;;t;; = riyty Vj # k. Given
Zjv;'l t;; = 1, we can obtain the throughput for each user in Alhder virtual AP association

as,

1
rijtiy = <% 1 1)
iij Zj\[:l%

Similar derivation can be applied on WiMAX BS. So under theuatassociation, the throughput
of AP i is T; = —x——. The throughput of WIMAX BS iST,imax

_ 1
Zj:ll "BUW Zzzyil(l_mll)ﬁ'%] .
We define “load” as the inverse of the throughput in an AP orBBe For example, the load of

APiis L, = Ti In particular, useti, 5) contributesmjﬁ_j amount of load ta_;, and(1 —:cij)R%L_j

amount of load tal,,;,.... We list in Table | the important notations used throughbet paper.
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B. A Generic Framework to Quantify Integration Gain

In this section, we propose a framework to quantify the irdggn gain, which has not been
considered in prior work. We aim to make it generic so the Bark can accommodate typical
performance metrics such as minimum (average) throughpakimum (average) delay, link

guality, and reliability, etc. The framework consists ofe@ steps:

1) Create a WiFi-only network withV,,;;; users. Measure the network performance. We
denote the performance ag;;. In this step, the network can be generated arbitrarily. We
do not pose any control on it. For instance, it could be a ramigaleployed WiFi network.

2) Create a WiIMAX-only network with a controllable number wdersN, ;... in the same
service area. In this stepY..n... IS carefully adjusted to make the performance of the
WIMAX network alsor,,; ;. For example, if the performance metric is average throughp
andr,;;; = 0.5Mbps, we can generate a set of WIMAX users and adjust its number so
that the average throughput is close enough.5d/bps. Note that, under other metrics, it
could be more complicated than simply adjusting the numb&/iMAX users to achieve
the same performance.

3) Integrate the two networks with their corresponding sisee., total number of users in
the integrated network iV, = Nuyisi + Nuwimes- Based on the first two steps, if the
two networks are simply merged without interactions betwdeem, the performance of
the integrated network should still bg,;;;. On the other hand, there may exist metric-
dependent interaction policies that improve the overatfggmance. We choose the best

Topt—Tuwifi

policy and denote its performance ag,. We define the integration gain as———. If

wifi

the best policy is impractical to find (e.g., the problem is-N#?d), one may resort to its
approximations.
The key concept is as followby ensuring WIMAX has the same performance as WiFi before the
integration, we ensure that the gain comes from integratimtead of additional resource€n
the other hand, the performance analysis of existing stuzhdntegrated heterogeneous networks
does not separate the integration from additional ressutogheir analysis, the auxiliary network
is added to the main network for free. The gain they obserseltefrom a mixture of the two

causes (i.e., integration and additional resources).
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Before we can calculate the integration gain, we need to sth@operformance metric, and
derive its optimal policy. In this study, we focus on max-ntimoughput fairness. We choose
max-min fairness because it improves worst-case experiand is achieved by the default WiFi
access scheme. In addition, max-min fairness is more maiieaty tractable, which enables
us to focus on the essence of integration gain. We are awaténtla single-cell scenario, a user
with a poor channel condition can deteriorate the perfoceani other users severely under max-
min fairness. In this multi-AP WiFi/WIMAX network, the pefmance is determined by many
factors, including user distributions, number of users ache AP, and network heterogeneity.
Therefore, the impact of a single user is much smaller.

We also briefly cover the proportional fairness metric, wWhi@lances between the two com-
peting objectives of maximizing the total throughput andviding a certain level of minimum
throughput to the individual user. In the single-cell seemait is considered to be a better
performance objective than max-min fairness because tbadghput of each user is proportional
to its data rate. In this work, we conduct a preliminary stwahythis metric to formulate the
problem and provide some insights. A complete study on ptapal fairness metric will be

included in future work.

IV. MAX-MIN THROUGHPUTFAIRNESS AND APPROXIMATION ALGORITHM

We first prove it is NP-hard to achieve integral max-min tlgigput fairness in the integrated
WIiFI/WIMAX network. Then we propose an approximation algoem that achieves guaranteed

performance.

A. Max-Min Throughput Fairness

Let a throughput vectofl’ = {t1,t2,- -+, ty} denotes the throughput distribution of all users
in the network. Without loss of generality, we assutnec ¢; for i < j. Informally, max-min
throughput fairness means that sennotincrease the throughput of one user without decreasing
that of another user with equal or less throughput. Formdlig defined as follows.

Definition 1: Max-Min Throughput Fair: A throughput vectorT is called max-min fair if
it has the highest lexicographical value among all througlvectors. That is, i #+ ? there
exists a positiory such thatt; = ¢; for i < j, andt; > ¢..
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Note that “max-min” and “maximize the minimum” are two difémt concepts. We use the
former to describe the bandwidth allocation with the begiclegraphical order, and the latter
to describe those with the maximum minimum throughput. Softiimer implies the latter, but
the reverse usually does not hold. However, these two abgscare equivalent in an integrated
WIiFi/WIMAX network under fractional association. As we Wahow later, the corresponding
fractional association can be easily obtained by solvingrgle linear program (LP). On the
other hand, to provide max-min fairness under integral @ation is NP-hard. We provide the

proof below.

B. Proof of NP-hardness

We consider a special case of our problem: There are only dhe one BS. Each user
is within the coverage of both networks. Assume that the oat¢the WIMAX link is the same
as the WiFi link for a given user, but varies among users. Wvgtthat this special case is
NP-hard. The general case, where there are multiple APs actt @ser has different WiMAX
and WiFi rates, is also NP-hard. We prove it by redudiagtition to our problem.

Definition 2: Partition (decision) : Can a set of numberS, be divided into two disjoint
subsetsS; and S;, such that the sum of both subsets equals?

Let A be an instance oPartition. Each element irA has a weight associated with itself.
Let the sum over all weights il be 2D. We then construct an instance of our problém
from A. We view each element id as a user. The weight is the load contributed by this user.
Under the previous assumption, each user contributes the amount of load whether it stays
in WiFi or WIMAX network. If A is a “Yes” instance ofPartition, we can divideA into two
subsetsd; and A,, each has a total weight d. So we can also distribute the usersBnsuch
that the AP and the BS have the same load)pfand thus the same per-user throughpu%of
It is the max-min throughput allocation. Conversely, thexman throughput allocation of3
could have two possibilities: 1) all users have the sameutfliput; 2) some users have different
throughput than others. In case 1), the AP and the BS haveathe $oad ofD. Thus, we can
follow the same user distribution to divide the elementsiiinto two subsets with the sum of
weights equalsD in each subsetd is thus a “Yes” instance. In case 2), the AP and the BS
have different loads, and some users have throughput Iaasl%thA must be a “No” instance.

Otherwise, we can distribute the usersdrsuch that all users have the same throughpLg.oIIt
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is a throughput distribution of a higher lexicographicaderthan the given max-min throughput

allocation, which is not possible.

C. Max-Min Fairness under Fractional Association

Optimal fractional association provides the best possitd&-min throughput fairness and thus
its performance serves as a benchmark for that of integemicéations. While it is difficult to
achieve max-min fairness under integral association, ptienal fractional association to achieve

max-min fairness can be obtained by solving the followinge LP.

min 3 (2)
N; 1
j=1 i

N; 1
2.2 (I—wy)p- <P
j

i j=1

The objective is to minimize the maximum load among all usérsve let g = é where o
represents the throughput, we see that it is equivalent tamize the minimum throughput.

We denote the solution ag That is,y is the vector to include the fractian; for every user
(7,7). Note that (2) does not have assumptions on initial conati®o we should always get the
same output no matter what the initial association the useng have. To ease the presentation,
in the following discussion, we imagine all users initiadlgsociate with WiFi APs (i.e., following
the virtual AP association). We say us@rj) is switchedto WiIMAX under y if z;; < 1. It
includes two cases: the user is in WIMAX entirely, (= 0) or fractionally ¢;; > 0).

Given the association, we can compute the throughput fdr eaer. We usé’ to denote the
throughput distribution undey. Now we prove that’ is max-min fair. First, we introduce the
bottleneck group which is adapted from [3].

Definition 3: Bottleneck group: Under x, WiFi APs with at least one user switched to
WIMAX, together with WIMAX BS, are called the bottleneck gno G 5.

Lemma 1:In 7, all users in the bottleneck group have the same throughputhich is the
inverse of the objective value of (2).

Proof: Define T' as the inverse of the objective value of (2). Thiisis the minimum
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throughput inT". Let us consider AR in the bottleneck group. By definition, it has at least one
user switched to WiIMAX. We usg&, andT,,;.... to denote the throughput of AlPand WiMAX,
respectively. First we prove thdt,;,... must equal to the minimum throughput of the network,
which isT'. Otherwise, there exists an AP with throughfiit,, < T.,imez- Then we can switch
some users from this AP to WIMAX until both reach the same ugtput. Therl;,;, will be
improved, which contradicts the objective of (2). Second,pwoveT, = 1. Otherwise, we
must havel, > T,imae- Then WIMAX can “return” some users it previously switchedrh AP

a until 7, andT,,;,... €qual. It improves the minimum throughput of the networkgtcadicting
(2).

The above proof can be applied to each AP in the bottleneckpgrohus, all users in the
bottleneck group have the same throughput [ |

Theorem 1:x leads to the max-min throughput fairness under fractiosabaation control.

Proof: We prove by contradiction. Assume we can find a better associgl, which leads to
a better (in terms of lexicographical order) throughputriistion. Let7” denote the throughput
vector under’. We havel” > T. From Lemma 1, the lowest throughputifi must also bel’,
which is the best minimum throughput. Following the sameopes in Lemma 1, WiMAX must
also have the lowest throughput undgr. Let G denote the group of APs whose throughput
are smaller thar¥” before the load balancing. Undgt each AP inG must have some users
switched to WIMAX and thus belongs to the bottleneck gréigp Undery’, each AP inG must
have equal or larger throughput thansince?” > 7. So these APs also have users switched to
WIMAX. We argue that AP inG undery’ cannot have a throughput larger th@n Otherwise,
such AP can increase the WIMAX throughput by recalling somgimal users from it. Then
WIMAX can in turn help each AP with throughput @f a little bit by increasing the fraction
of users it switches from these APs. The minimum throughglitbe larger thanT’, which is
not possible. Thus, each AP @, and the WIMAX must also have the throughput©funder
X'. This suggests that exactly the same set of users with the #awtion are switched frort¥
to WIMAX under bothy and x’.

The only wayf’ can be better thaft' is thereforey’ may switch some users from APs with
original throughput larger thafi’. These APs, denoted &%, do not have users switched to
WiMAX under y, thus remain the original throughput. So#, at least one AP i’ has users
switched to WIMAX. Then WIMAX must have a throughput lessril¥a which leads tal” < T.
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Algorithm 1 Approximation
Each user query WiFi and WiIMAX rates from its two radios, aegart to its virtual AP
AP i sorts virtual users based on their WiMAX-WiFi rate rafiy; /r;; in decreasing order
while The minimum virtual throughput improveto
Find the AP with the minimum virtual throughput
Switch the first user to WiMAX
Check the virtual throughput of WiIMAX and APs
end while
Output the association

Algorithm 2 Intermediate

/"¢ < Solve LP (2)

Include every usej with z; = 1 into WIMAX

For all the fractional users ig/m

while The minimum throughput improveso
Find the AP with the minimum throughput
Switch the fractional user to WiMAX
Check the throughput of WIMAX and APs

end while

Algorithm 3 Reference paper
x/m¢ « Fractional_Load_Balancing(A, U)
X" < Rounding (/™)
return

D. Approximation Algorithm

Since our problem is NP-hard, we have to use an approximatgorithm to provide integral
association in practice. We want the approximation alporitto guarantee the performance
relative to the optimafractional solution, which is the fairest among all possible throughpu

distributions.
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1) Algorithm Description:The algorithm is shown in Algorithm 1. It works on the intetge
network with an arbitrary initial association. Each useengs the WiFi and WIMAX data rates
from both radios (The WiFi rate is from the virtually assdet AP). After each user reports
its rate information to the corresponding virtual AP, eadh gorts all associated virtual users
based on their WiIMAX-WiFi rate ratio in a decreasing orddneTalgorithm then starts a loop.
Inside the loop, the AP with the smallest throughput is gebcand its first user is marked to
be switched to WIMAX. Each AP and the WIMAX BS then update thaitual throughput, and
the algorithm starts the loop again until the minimum thitgqugt of the integrated network stops
increasing. A few observations are in order. The proposgdriéihm exploits all three factors
discussed earlier to achieve the network integration geime capacity ratio between WiMAX
and WiFi interfaces (i.e.R;;/r;;) exploits multi-network diversity; the ranking among aleus
exploits multi-user diversity; and the selection of the ARhwthe lowest throughput exploits
spatial multiplexing.

In practice, each AP can report its virtual throughput to \WiXIBS. The BS is then respon-
sible for selecting the right AP in each iteration. The comagion is distributed among APs and
the BS. We have two layers of information exchange (i.e.r-A$e and AP-BS) with limited
message overhead in each layer. Due to the special strunture integrated WiFi/WiMAX
network, such a simple algorithm can still provide perfonce guarantee. In the following, we
focus on the users switched to WiMAX under optimal fracticessociationy. Among them, we
defineintegral users as the users with; = 0, andfractional users as the users with< z;; < 1
undery.

2) Proof of the Performance Bound:

Theorem 2:Algorithm 1 provides 2-approximation to the optimal fractal solution.

Proof: In the following, we outline the proof before we provide thetalls.

1) Prove that an intermediate algorithm (Algorithm 2) résuh a throughput distribution
with an equal or higher lexicographical order than an exgstlgorithm (Algorithm 3),
which is shown to provide 2-approximation to the optimaktfranal association.

2) Prove that our approximation algorithm (Algorithm 1) uks in a throughput distribution
with an equal or higher lexicographical order than the miediate algorithm (Algorithm 2).
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a) Step 1. Reference [3] presents a 2-approximation algorithm witlkeghold, as shown in
Algorithm 3. In the algorithm Fractional_Load_Balancing(A, U) consists of two LPs and a
simple graph coloring procedure. It gives the optimal fi@wl user association to provide max-
min throughput fairness. The rounding method [16] cons$rac bipartite graph based on the
optimal fractional association, then uses maximal matghindetermine the integral association.
Since our problem can be viewed a special case of theirs jiHi3]algorithm can also be applied
on our problem after we replacBractional_Load_Balancing(A,U) with the LP defined in
(2). Though applicable to the same problem, our algorithnbetter than theirs because of
two reasons. First, our algorithm can also provide 2-apprakon to the optimal fractional
solution. Numerical simulation (later in this section) slsathat our algorithm outperforms theirs
in practice. Second, the computation and information exghaof our algorithm are distributed,
which makes our algorithm easier to implement. One impompaoperty of Algorithm 3 is that
it switches all the integral users and a subset of fractiosals to WiMAX. We need it for the
following proof.

We design an intermediate algorithm shown in Algorithm 2akiesy as input. It first switches
all integral users iny to WIMAX. Then it performs a similar loop as in Algorithm 1. Bit only
looks at fractional users in each AP inside the loop. We noamsthat Algorithm 2 performs
better than Algorithm 3 in terms of lexicographical value.

Lemma 2:Under y, within each AP, a user switched with WIMAX has a higher or &qu
WIMAX-WiFi rate ratio than any user remaining in that AP.

Proof: The Lagrangian function of the LP defined in (2) is

A

L(B,x) = B_Z:ei (6 Zx” ) ZZ)\U‘TU ZZWU — Tij)

JEN; i j=1 i j=1
P (B=> > (1- xij)? ,
i j=1 i
whered, A\, w, andy are slack variables. According to Lagrangian Multiplierthwel and com-

plementary slackness, we have the following equations,

El
8—L—1—ZH— =0 (3)
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oL 1 1
:ei__)\i' i — Y5 =
8$ij Tz'j J _'_WJ ¢R2J O

)\ijxij =0 Vv User(’i,j)

wij(l — xij) =0 V User(’i,j).

Within AP 4, if user j has been switched, i.ex;; < 1, then we have

1 1
ZZO,)\220:>91—2 .
o ! Tij wRij

Similarly, if userk has not been switched, i.e:;, = 1, then we have

1 1
wit > 0, A =0=0,— < ¢p—.
Tik Ry,

Thus we have%?' > L, m
Corollary 1: Giveny, there exists an associatigh with the same performance where an AP
can have at most one fractional user.

Proof: Under y, if AP ¢ has two fractional usefi, j) and (i, k), we have0d < z;;, z;, < 1.
Thus%’ = If—: based on (3). Similar idea applies to the case with multi@etional users. So
all fractional users in the same AP must have the same WiMAKi\Wate ratio. In this case,
we can always “aggregate” multiple fractional users intmeadntegral users and at most one
fractional user without changing the performance. We d$tarh a simple case by assuming AP
a has 2 fractional users undgr Their fractions arer; andxz,, WiFi rates arer; andr,, and
WIMAX rates areR; and R, respectively. The throughput of this AP is

1

= I 1o
La +.T1Tl +.T2T2

T, 4)

where L, is the load contributed by other users in this AP. Similathe throughput of the
WIMAX is
1

5 5
szmam"‘(l—xl)}%—l—(l—xz)}% ( )

Twimax -

where Limaq.: 1S the load from other users in WIMAX. We ha\%L = f—;. We consider two
cases:
Case 1::—351;1 + zo < 1. We consider a new associatigh where both fractional users have

associations of; = 0,2}, = jj—fxl + x9, and associations of other users remain unchanged. We
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can verify that the throughput of AlPand WiIMAX is the same iny andy’. Since the throughput
of other users remain the sameand \’ lead to the same throughput distribution.

Case Z:Z—fxl + xo > 1. We consider a new associatigh where both fractional users have
associations of} = z; — (1 — x2)71, 25 = 1. We have0 < z; < 1. Similarly, x and x lead to
the same throughput distribution.

If we have multiple fractional users, we iteratively apphetsame approach on two fractional
users until at most one fractional user remains. [ |

In the following, we assume each AP undehas at most one fractional user. Otherwise, we
can always use the correspondiggto replacey.

Theorem 3:Algorithm 2 results in a throughput distribution with an efjer higher lexico-
graphical order than Algorithm 3.

Proof: Note that Algorithm 3 switches all integral users and a subs$dractional users
to WIMAX. From Corollary 1, Algorithm 2 also switches all egral users and a subset of
fractional users to WIMAX. We usé& to denote all algorithms which switch all integral users
and a subset of fractional users to WIMAX. It suffices to prtvat Algorithm 2 is the best ifY
in terms of max-min fairness. Suppose there exists Algarizhin I" with a better performance.
Since they share the same set of integral users, they maist hiffractional users. Lef\ and
A’ be the set of fractional users switched in Algorithm 2 andohim 2/, respectively. It is
trivial that A cannot be a subset &’. Otherwise, the minimum throughput under Algoritt2m
will be lower than that of Algorithm 2. So let us focus on theseavhere some fractional users
switched inA are not switched in\’. Consider one of these usets,and the corresponding AP
¢ it originally associated with. LT~ denote the throughput of APbeforea is switched with
WIMAX. In Algorithm 2, the minimum throughput is strictly tger than7?~ because it keeps
switching fractional users until the minimum throughputpst increasing. On the other hand,
the minimum throughput of Algorithrd’ is at most7;~ because user is not switched. Thus,
Algorithm 2 actually performs better than Algorith2h, which contradicts the assumptionm

b) Step 2: Now we show that Algorithm 1 performs better than Algorithm\®e first
prove the following lemma.

Lemma 3:The set of users switched in Algorithm 1 is a subset of thaieurd

Proof: We prove by contradiction, and only need to consider the vdsse Algorithm 1

switches at least one user which is not switched undaiNe consider one of such user, We
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have two scenarios:

Scenario 1u is from AP which has no user switched underSo AP: must have an original
throughput”; larger than the bottleneck throughpiit If Algorithm 1 switches uset at some
iteration, the minimum throughput in Algorithm 1 is largéah7;. Thus, Algorithm 1 leads to
a better max-min throughput distribution than that ungewhich is not possible.

Scenario 2 is from AP ¢ which has users switched under Thus, the throughput of AP
undery is 7. From Lemma 2, we know that users switched ungdéave a larger WiMAX-WiFi
rate ratio than users stay associated with the original AiReSAlgorithm 1 sorts users based
on their rate ratio, user must have a lower ratio than users switched undefhus, switching
usera suggests that users switched ungeshould have already been switched in Algorithm 1.
Therefore AP; already has a throughput at ledSbeforea is switched. Then after is switched
in Algorithm 1, the minimum throughput will be larger thdh We face the same contradiction
as in the first scenario. [ |

Theorem 4:Algorithm 1 results in a throughput distribution with an efjer higher lexico-
graphical order than Algorithm 2.

Proof: Let () denote the set of users Algorithm 1 switches. By Lemm& 3 a subset of
all users switched undey. We have two scenarios.

Scenario 112 includes all integral users and a subset of fractional usedery. In this case,
Algorithm 1 and Algorithm 2 perform exactly the same.

Scenario 212 omits at least one integral users ungerand includes the other integral users
and a subset of fractional users. We consider one of the eanititegral uset. from AP i. Let
T~ denote the throughput of AP beforea is switched in Algorithm 1. We assumg®™ is
the smallest throughput among all APs containing omittedgral users. There must exist at
least one fractional user which is switched to WIMAX. Othessy Algorithm 1 will not stop
because WIMAX still has a higher throughput than the bo#tdnthroughput” (no fractional
user in WIMAX yet). It can therefore switch userto WiMAX to achieve a better throughput
distribution. We look at théast fractional usem to be switched to WiMAX under Algorithm 1.
Assume the corresponding APjisAccording to Algorithm 1, we hav@‘;b‘ < T7~. We prove by
contradiction. Suppose Algorithm 2 performs better. Weuarthat the fractional usér should
also be switched in Algorithm 2. Otherwise the minimum tlgloput under Algorithm 2 is at

most Tj" while the minimum throughput is strictly larger thzi/lj" under Algorithm 1. We
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can argue the same on all the fractional users switched bgriffign 1 beforeb because the
corresponding APs have throughput less tlﬁﬁ before their fractional users are switched.
These users should also be switched in Algorithm 2. Sincertlgn 2 switches an extra user
a to WIMAX, its WIMAX throughput should be lower than that of gbrithm 1.

If WIMAX throughput is the lowest in both algorithms, we hagecontradiction that Algo-
rithm 1 actually performs better than Algorithm 2. Othemyithere must be an AP which has
the lowest throughput under Algorithm 1, while under Alglom 2, APk has equal or better
throughput. But it cannot be better because it means th&dnat user is switched to WiMAX
under Algorithm 2. Since WIMAX throughput under AlgorithmisLhigher, it can also switch the
fractional user in AR before the algorithm stops. We argue the same for each ARpefaeAP
1 because it has a lower throughput in Algorithm 1 than in Aldpon 2. But WiMAX throughput
under Algorithm 1 has to be lower tha&rf~, otherwise it can always switehto WiMAX. Thus,
if WIMAX is not the lowest, the throughput vectors before WAM must be equal under both

algorithms, and they differ from WiMAX. Thus, we have the saoontradiction. [ |

V. PROPORTIONAL FAIRNESS

In this section, we define the proportional fairness metnid provide the formulation of the
problem. As will be shown later, the objective function obportional fairness is nonlinear
and non-convex. Due to its inherent complexity, neitherdpg&mal policy nor an approximate
algorithm for the proportional fairness metric can be gadérived. We apply the Lagrangian
Multiplier method on the formulation to gain some insightée infer the optimal policy for a
special scenario, which motivates us to design a heuristithie general scenario.

Basically, proportional fairness allocates bandwidth $ers in proportion to their data rates.
Formally, it is defined as follows.

Definition 4: Proportional Throughput Fair: A throughput vectorT is called proportionally
fair if the product of all individual throughput componeigghe maximum among all throughput
vectors. That is,? is the solution to argmai{"_, ;.

According to the definition, the optimal user associatioratbieve proportional fairness can
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be obtained by solving the following optimization problem,

M
1 1
max H o X

i=1 N; 1 Z':Z1xij M N;
' (ijlxijﬁj) ’ ( i1 220 (1= x”)R

Inverse the formulation and take the logarithm form, we haweequivalent formulation,

mm{(Z(Zx”logZx”2_))%—%% xulog(zzi: ) };)} @

=1 \y=1 i=1j5=1 i=1j5=1

(6)

)ZZW1Z L (I=zi5)

We apply the Lagrangian Multiplier method. The Lagrangianction of (7) is,

L(Z,X, ) Z ((éx”> logixij%) + (%i(l — Tij )log (ZZ (1— Rl])

i=1j5=1 i=1j5=1

N; N;
- Z > Nijig — Z > wi(1—zy). (8)

i=1j=1 1=1j=1

Including the complementary slackness, for each (¢sen, we have,

oL LT Zjvl Lij Ni 1
. logZx” ' 7—ogzz 1—93,le

K2
Tij Z] 1xljr i=1 j=1

Z, 1Z] 1( xij)

_ LJ —_ )\Z _|_ WZ” — 0
Moy - xij)Rlij ! ’
)\ijxij = 0

Now we consider two user§, j) and (i, k), i.e., thejth andkth user in AP: under virtual
association. Assume the optimal policy to achieve proppdi fairness switched, ;) to WiMAX
while leave(i, k) in AP i. Thus, we must have,; = 0 and \;; = 0. As slack variables);; > 0

andw;; > 0, then we have,

1 1 N; 1 1 M «—N;
(—., - —) > m=1Tim S (Rw - Rz‘k) >iz1 m:l(l - $z’j)

Tij Tik
N 1 = M N 1
2 om=1 Tim 7, im1 2ome (1 — xij)m

(10)

The optimal policy cannot be directly obtained from (10). ¥dmsider a special case where
both users have the same WIMAX rate, i.8,; = R;;. In this case, we must have; < r;, to

satisfy (10). So the optimal policy under this special casstnalways switch the user with the
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Algorithm 4 Heuristic for proportional fairness
Each user query WiFi and WIMAX rates from its two radios, aegart to its virtual AP
AP i sorts virtual users based on their WiIMAX-WiFi rate rafi; /r;; in decreasing order
while The product of the virtual throughput from all users improde
Save the product of throughput as previous product
for all AP i do
Temporarily switch its first user to WiMAX
Calculate the current product of throughput from all users
Record the change in the product from previous one
end for
Select the AP which leads to the highest change in productsantth its first user to
WIMAX
end while
Output the association

smallest WiFi rate within an AP. Note that, it is also a specase of switching the user with
the highest WiIMAX/WiFi rate ratio where users have the samBIXX rate. In general, when
users have non-uniform WIMAX rates, we conjecture that theaiof switching the user with
the highest WIMAX/WIFi rate ratio may still achieve a goodrfeemance. Thus, we propose
a heuristic algorithm to achieve proportional fairnesshia tntegrated WiFi/WiMAX network
(i.e., Algorithm 4). Similar to the heuristic under max-miairness, Algorithm 4 also sorts
users within an AP based on their WIMAX/WiFi rate ratio. Theatence is, in each iteration,
Algorithm 4 compares all APs, and switch the user from the Afictv leads to the highest
increase in throughput product. While we do not claim thajokithm 4 achieves a guaranteed
performance ratio, simulation results show that it actsegeod performance compared to the

optimal solution. We shown it in next section.

VI. PERFORMANCE EVALUATION THROUGH NUMERICAL SIMULATIONS

We use Matlab to conduct numerical simulations. We assuni=|B02.11a as the MAC
and physical layer standard for WiFi. The channel bandwisl2OMhz for WiFi and 10Mhz for
WIMAX. The transmission power is set as 40mW and 80mW for Véid WIMAX, respectively.
We assume both WiFi and WIMAX use OFDM with adaptive modualatiThey differ in symbol
rate, number of carriers, and coding rates. We adopt theevaaha formulations suggested by
the standard or in the literature [1], [8]. The supported olation schemes include QAMG64,
QAM16, QPSK and BPSK. We start from QAM®64, calculate the egponding data rate and
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BER. If the BER exceeds a pre-defined target BER (&«3.3), we switch to the next modulation

scheme which leads to lower data rate and BER. We repeatriiess until we meet the BER
requirement or we reach the last modulation scheme. In ttier laase, we claim the link

is broken. Otherwise, we use the corresponding data rateB&Rl Once the data rates are
determined, we use the simplified “throughput share” liaker model within each AP and the
WIMAX BS to determine the throughput of each user (see SedtieA for details).

Using MATLAB-based simulations, we have tried to captureithpact of the aspects of MAC
that significantly impact our study. A more detailed simwlate.g., in ns-2) would certainly help,
but would not changes the inferences of the study. We incthdeuse of a detailed simulation

environment in our future work.

A. Max-Min Fairness

We use simulations to compare the performance of the opftnacional solution, the proposed
heuristic algorithm (i.e., Algorithm 1), and the algorithm[3] (i.e., Algorithm 3). We first study
the integration gain by comparing the three algorithms wita performance of the separate
network before integration. We then investigate the immddhe virtual AP association policy
on the performance of the heuristic algorithm.

1) Integration Gain: We consider a service area of 1500x1500. Nine APs form a aeguid
in the service area, while users are randomly and uniforndfriduted. We assume that users
determine the virtual AP association based on the receingthlsstrength. We name itearest
AP policy. WIMAX BS is placed at the center of the service are&. &Nange the number of users
from 50 to 250. For a given number of clients, we average thaelt®over 50 random instances
and plot the confidence interval. In each instance, we foltbes three steps in the generic
framework. We use the minimum throughput across the netvasrkhe performance metric.
Recall that the throughput vector is sorted in ascendingroriccording to Definition IV-A, a
better minimum throughput isufficientto guarantee a better throughput vector in terms of max-
min throughput fairness. We plot the throughput under tlatgerithms (i.e., optimal, Algorithm
1 and Algorithm 3) in the integrated network and that of the wetworks before integration.
Note that, the WIMAX network introduces additional resautout alsoadditional userssuch
that the WIMAX network has the same performance as the WiBvoik. So the performance

curve of “before integration” represents the performanicthe two individual networks without
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Fig. 1. Spatial multiplexing gain: uniform rate scenario

interactions between them. In the following, we designedléht simulation scenarios to focus on
three aspects of the proposed algorithm that corresportetthtee types of gains we discussed
before, respectively.

a) Spatial Multiplexing Gain:In order to separate spatial multiplexing gain from others,
we study the scenario where users have uniform WiFi and WiMARes. Uniform rate means
that all users in the same network experience the same rgte 5éMbps in WiFi and 50Mbps
in WIMAX. In this case, all users associated with the same A® eguivalent (i.e., has the
same WiMAX/WiFi rate ratio). The proposed algorithm does distinguish between users. It is
thus reduced to perform the load balancing between WiFi aidAX network by switching a
certain number of users. Fig. 1(a) shows the minimum thrpuginder uniform rate. In this case,
Algorithm 1 performs slightly better than Algorithm 3. Botf them achieve close to optimal
performance. We observe about 60% integration gain, whathes from the load balancing.
Users in congested WiFi APs will be switched to WIMAX to impeothe minimum throughput.
However, as shown in Fig. 1(b), the integrated network hasly¢he same average throughput
as before integration. Note that spectrum efficiency detesthe average throughput. Before
integration, the two networks have the same average thpuigiswitching users does not
improve spectrum efficiency when users in an AP or the BS hasesame spectrum efficiency

(i.e., data rate). So the integration gain only comes froatiapmultiplexing.
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Fig. 2. Multi-network and multi-user diversity gain: noniform rate scenario

b) Multi-network and Multi-user Diversity GainNext, we consider the scenario where
users have non-uniform data rates. The data rate is detedniy the received SNR, the target
bit error rate (BER) and the corresponding modulation sehémgeneral, the rate decreases with
the distance between the sender and the receiver. Undeumform rate, we have difficulties
in generating the WIMAX network in step two of the framewotk. this case, the minimum
throughput is determined by both the number of users in tbegand the minimum data rate
among users. It is difficult to create the WiIMAX network withet same minimum throughput
because of the variations in the data rate. So we make a sfighification to the framework.
We generate the WIMAX network based on the average througBut the integration gain is
still calculated based on the minimum throughput. The parémce trend should be the same
as in the original framework.

Fig. 2(a) plots the minimum throughput under non-uniforrieradlgorithm 1 performs close
to optimal, and considerably outperforms Algorithm 3. Tlaéngis about 250%, which is much
larger than that under uniform rate. This is because twotiadl sources of integration gain
exist in this scenario. Under the non-uniform rate casesuséh low WiFi rates may have high
WIMAX rates or vice versa. By switching these users from vehigrhas low rate to where it
has high rate, in addition to the load balancing, the spetktficiency also improves, which is
indicated by higher average throughput in the integratedor& than that of before integration

(Fig. 2(b)). In other words, we exploit thaulti-network diversityFurthermore, among all users
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Fig. 3. Separate multi-user diversity from multi-networksedsity: comparison between the proposed algorithm and an
intermediate algorithm

which are available to be switched to WiMAX, the heuristig@ithm always switches the users
with the highest WIiMAX-WiFi rate ratio, which is to exploibhé multi-user diversity These are
the reasons for the large improvement we observe. We alsenabsghat the optimal fractional
solution leads to a lower average throughput than Algorithmnd Algorithm 3, which is not
surprising. To improve the minimum throughput, the optis@ltion tends to allocate more time
to the users with low data rates, which leaves less time fersuwith higher data rates. Thus
the average throughput hurts. In addition, we see that Algarl outperforms Algorithm 3 in
both minimum and average throughput.

To further separate multi-user and multi-network divgrgiain, we compare the proposed
algorithm with an intermediate algorithm, callétighest WiMAX It differs from the proposed
algorithm in only one aspectlighest WiMAXsorts users based on WiMAX rate only rather
than WIMAX/WiFi rate ratio. So it switches the users in a difint order than the proposed
algorithm. Fig. 3 shows the performance of both algorithiinslearly indicates that the order of
switching users also plays an important role in determirivegintegration gain we can achieve.

2) Impact of Virtual AP Association PolicyWWe compare the performance of the proposed
heuristic algorithm under different virtual AP associatiolicies. Besides theearest ARpolicy,
we also implement a simplendompolicy. That is, users randomly choose an AP among all
APs that can be heard. We increase the number of APs to 16 toeetisat most users have

more than one AP to choose from. We assume users have nammnifata rates. As can be
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4), and a simple random algorithm.

imagined, users are more evenly distributed umdedom policy. But the average data rate is
also lower.

As shown in Fig. 4, Algorithm 1 reaches a higher throughpufgsmance undenearest AP
policy than underandompolicy. Underrandompolicy, users tend to have lower data rates in
APs, which limit the maximum minimum throughput across thistem. On the other hand, we
still achieve an integration gain of around 230%, which imparable to that undarearest AP
policy. In summary, change in virtual AP association hasmapact on the absolute performance.

But it does not affect the integration gain much since it i®lative performance metric.
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B. Proportional Fairness

In this work, we show the preliminary simulation results @ligate the performance of the
proposed heuristic algorithm. We compare it with the optis@ution and a random algorithm
which simply select a random user from WiFi network to switciWiMAX until the throughput
product stops increasing. We use brute force search torotitai optimal solution. Due to the
exponential complexity, we cannot compute the optimal tsmhufor network with more than 20
users. We focus on the non-uniform rate scenario.

Fig. 5 plots the throughput product of the three algorithiitse proposed heuristic achieves
close-to-optimal performance in terms of the throughpotpct. Under our heuristic, users with
higher WIMAX-WiFi rate ratio will be switched earlier. Th&, our heuristic tends to replace a
small throughput with a large one by switching a user, whgchn intuitive way to improve the
throughput product of the system. It also explains the big gatween the random algorithm
and the other two. In the future, we will perform a deeper $tigation on the framework and

the heuristic to obtain more insights.

VIlI. CONCLUSIONS

In this paper, we study the integration gain of integratedc¥WiMAX network. Previous
work on integrated heterogeneous networks usually assaneesf the networks is the main, and
compare the performance of the integrated network with tammetwork. Thus the performance
gain comes from the additional resources brought by thdianxnetwork as well as the network
integration. To our knowledge, we are the first to proposeaméwork to explicitly identify the
integration gain, which is separated from the impact of @il resources. In other words, we
guantify the gain from the network heterogeneity and betesource utilization. The framework
supports different performance metrics. In this study, a@$ on max-min throughput fairness
and briefly cover the proportional throughput fairness. praposed framework does not depend
on any specifics of WiFi or WIMAX. In fact, it can be applied tayaintegrated heterogeneous
wireless networks. The optimal policy in step three, howesdees depend on the actual protocols
of the two networks.

We prove that it is NP-hard to achieve integral max-min fa&s We propose a heuristic
algorithm that provides 2-approximation to the optimakfranal association policy. The algo-

rithm is simple and intuitive. It is also easy to implemeneda its distributed nature. Numerical
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simulations show significant gain under both uniform and-noiiorm rate scenarios. We identify

three sources of integration gain, namely the spatial pieking, multi-network diversity, and

multi-user diversity.

For the proportional fairness metric, we derive the forrtiataand propose a heuristic algo-

rithm. The proposed algorithm achieves close-to-optinesifggmance in simulations.
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