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Abstract

In this paper we investigate the problem of uneven energy consumptions in a large class of many-to-one sensor

networks. In a many-to-one sensor network, all sensor nodes generate constant bit rate (CBR) data and send them

to a single sink via multihop transmissions. This type of sensor networks has many potential applications such

as environmental monitoring and data gathering. Based on the observation that sensor nodes sitting around the

sink need to relay more traffic compared to other nodes in outer sub-regions, our analysis verifies that nodes in

inner rings suffer much faster energy consumption rates (ECR) and thus have much shorter expected lifetime.

We term this phenomenon of uneven energy consumption rates as the “energy hole” problem, which may result

in severe consequences such as early dysfunction of the entire network. We proposed an analytical modeling for

this problem, which can help understand the relevance of different factors on energy consumption rate. Using this

model, we study the effectiveness of several existing approaches towards mitigating the “energy hole” problem,

including deployment assistance, traffic compression and aggregation. We have used simulation results to validate

our analysis.

Index Terms

Energy hole problem, many-to-one communication model, sensor networks, uneven energy consumption rate.

I. INTRODUCTION

Sensor networks have become a hot research topic in recent years [1], [2], [3]. Sensor networks are

formed of a number of nodes that are deployed for monitoring specific activities, such as environmental

monitoring, battlefield monitoring, and construction distortion detection. These nodes have limited re-

sources in terms of computation power, memory, battery power, and transmission capability. Among these

issues, the energy problem is of key concern. Low power devices can be used in order to reduce energy

consumption. Low-power algorithms and protocols for sensor networks are also under intensive research
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investigation. Some efforts have been directed to the fundamental lifetime limits in sensor networks [4],

[5], [6], [7]. In this paper, we will focus on the problem of uneven energy consumptions in a large class

of many-to-one sensor networks.

First of all, what is a many-to-one sensor network? This categorization relates to traffic patterns in sensor

networks. According to their traffic patterns, sensor networks can be divided into two major classes,

namely, one-to-many and many-to-one networks. In a one-to-many sensor network, the sensing data

obtained at one sensor node is disseminated into the network for multiple interested receivers. A more

generic application scenario of the one-to-many communication model would be a many-to-many network,

where multiple sensing nodes generate and disseminate their data into the network. In other words, in a

many-to-one network, traffic flows between random pairs of source and destination nodes. In a many-to-

one network, traffic from all sensor nodes is directed to a single sink (basestation) for further processing.

Many-to-one sensor networks have various applications such as data gathering, monitoring and surveillance

[7], [17], [18].

In very large scale monitoring sensor networks, clustering technique has been proposed to address

routing scalability and energy conservation issues [23], [24]. Sensor nodes send data to a local cluster

head, which may do some data fusion and aggregation and then forward the data to a central sink for

further processing. In such cluster-based sensor networks, each individual cluster is a many-to-one sub-

system. Meanwhile, cluster heads and the central sink form a upper level many-to-one communication

model. Thus our work is not only applicable to flat, many-to-one sensor networks, but also to hierarchical,

cluster-based large scale sensor networks.

Although in-network information processing and in-network reasoning are expected to take important

roles in large scale sensor networks (e.g. see [25], [26], [27]), some form of central functionality such as

decision-making and action commanding is required in many applications, which normally depend on a

many-to-one communication model to collect information from the network. Thus, it is very important to

understand the characteristics of energy consumption model in many-to-one sensor networks.

Energy conservation in sensor networks has two aspects. First, both the devices and the protocols or

algorithms in use should be highly energy efficient, which means to operate with the limited source of

battery power. Second, ideally, energy consumption rates in different parts of the network should be even
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or almost even. Thus all nodes throughout the network area have about the same lifetime. Otherwise,

some parts of the network may die much sooner than the others. In some cases as illustrated in Section

III-A, if some critical parts of the network run out of battery early, it may lead to early dysfunction of

the entire network, even if the other parts of the network still have a lot of residual energy.

In this paper, we are more concerned with the second aspect. We analyze the severe problem of uneven

energy consumption rates in many-to-one sensor networks. In particular, sensor nodes around the sink

suffer much faster energy dissipation rates, which we term as the “energy hole” problem. We develop an

analytical model to investigate this problem, and identify key factors that contribute to the uneven energy

consumption rates. Based on the characteristics of the “energy hole” model, we study the effectiveness

of several existing approaches in the literature towards mitigating the “energy hole” problem, including

mobile sink, deployment assistance, and traffic compression and aggregation. Some of these techniques

have been proposed to address networking problems such as clustering and routing scalability as well as

energy conservation. However, here we attempt to investigate the effectiveness of these approaches for

solving the “energy hole” problem based on our analytical model. We have done extensive simulations

on the performance of different approaches, and the results verify our analysis. A preliminary version

of our work was reported in [28]. In this paper, we extend our earlier work in several aspects. We add

more details in the development of our analytical model. We take more metrics into consideration when

analyzing the effectiveness of different approaches. We also present more new simulation results to verify

our analysis.

The organization of the rest of this paper is as follows. Preliminary issues and related assumptions are

given in Section II. In Section III, we describe the “energy hole” problem and propose our analytical

modeling. The effectiveness analysis of several existing approaches to address this problem are presented

in Section IV, followed by Section V on simulation validation. Related work is discussed in Section VI.

The paper is then concluded in Section VII.

II. PRELIMINARIES

In this section we introduce some background knowledge in sensor network models, sensor node and

system lifetime, the energy model we adopt as well as the assumptions we have made to facilitate the



4

discussion of this paper.

A. Sensor Network Models

An in-depth taxonomy on sensor network models can be found in [22]. Here we only discuss the

categorization of sensor networks based on their traffic patterns and traffic source characteristics.

Based on traffic patterns, sensor networks can be divided into one-to-many and many-to-one models,

as discussed in the previous section.

We can also do the classification of sensor networks based on other features such as traffic source

characteristics. Considering the traffic source characteristics, sensor networks can be categorized into

two major classes: clock-based and trigger-driven sensor networks. In clock-based sensor networks, each

active sensor node continuously generates constant bit rate data and sends it to a basestation(s) for further

processing. In trigger-driven sensor networks, only when certain event happens, like a tank entering the

battlefield, or a query being broadcasted, the sensor nodes are triggered by the event of interest and reacts

accordingly.

When taking both traffic source characteristics and traffic patterns into account, we can have different

combinations. For example, a sensor network is used in battleground to detect enemy tank intrusion,

and alarming information needs to be disseminated to many soldiers. This scenario falls into the trigger-

driven, many-to-many category. Consider another example, a continuous temperature monitoring network

falls into the clock-based, many-to-one category. Our work in this article is focused on the latter type of

sensor networks.

B. System Lifetime

System lifetime of a sensor network is concerned with the time period in which the network can maintain

its desired functionality, such as maintaining enough connectivity, covering entire area, or keeping miss

rate below a certain level. Note that system lifetime is related to, but different from nodal lifetime. Nodal

lifetime is the lifetime of individual sensor nodes. It depends on both given battery capacity and energy

consumption rate.

System lifetime of a sensor network has different definitions based on the desired functionality. It may

be defined as the time till the first node dies. It may also be defined as the time till a proportion of nodes
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die. If the proportion of dead nodes exceeds a certain threshold, it may result in uncovered sub-regions,

and/or network partitioning. The location of the failure nodes is also of importance. If the proportion of

nodes that have run out of battery are located in some critical part of the network, e.g., connecting the

central sink and the rest of the network, it may result in early dysfunction of the entire network. Although

it is not our intention to give a formal definition of sensor network lifetime in this paper, our discussion

in the rest of this paper should be taken in the spirit of the second “definition.”

We would like to point out that we are not intended to proposed a new technique which is more energy

efficient for sensor networks. Instead, we are interested in the uneven energy consumption issue in different

parts of the network. Our goal is to develop an analytical model for this problem. This model can show

what kinds of factors are significant to the uneven energy consumption issue. We also investigate the

effectiveness of two generic approaches in existing literature, namely, hierarchical deployment assistance,

and data compression and aggregation, in efforts towards alleviating the “energy hole” problem.

C. Assumptions

To facilitate the discussion in the rest of this paper, we make some reasonable assumptions on the class

of many-to-one sensor networks, as follows:

• In a clock-based many-to-one sensor network, each sensor node continuously generates constant bit

rate (CBR) data (b bits/sec) and sends to a common sink through multihop shortest routes.

• Nodes are uniformly and randomly distributed, so the node density is uniform throughout the entire

network:

p =
N

Anet

,

where N is the total number of sensor nodes and Anet is the coverage area of the sensor network.

• Sensor nodes have the same, fixed transmission range of r meters.

• Ideal MAC layer, i.e., transmission scheduling is perfect such that there is no collision and restrans-

mission.

• Sensor nodes use a location based greedy forwarding approach to transmit data packets to the sink.

Quite a few such techniques have been proposed (for example, see [19]). In greedy forwarding, data

packets are transmitted to a next-hop which is closest towards the destination.
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• Initially the network is well connected. The problem of what node density can ensure network

connectivity is investigated in [35].

D. Energy Model

A typical sensor node comprises of three basic units: sensing unit, processing unit, and transceivers.

For the energy model, we consider power for sensing, power for receiving and power for transmitting.

The processing energy is not accounted for here, which depends on the computation hardware architecture

and the computation complexity.

The energy consumption formulas that we use in the analysis and simulations throughout the rest of

this paper are as follows:

PSense = α1b,

PTx = (β1 + β2r
n)b,

PRx = γ1b,

where b (in bits/sec) is the data rate of each sensor node. According to [36], the term rn accounts for

the path loss, and the typical value for n is 2 or 4. According to [37], some typical values for the above

parameters in current sensor technologies are as follows:

α1 = 60 × 10−9J/bit,

β1 = 45 × 10−9J/bit,

β2 = 10 × 10−12J/bit/m2 (when n = 2),

or, β2 = 0.001 × 10−12J/bit/m4 (when n = 4),

γ1 = 135 × 10−9J/bit.

III. THE “ENERGY HOLE” PROBLEM AND ITS CHARACTERIZATION

In many-to-one sensor networks, data from all sensor nodes are transmitted to the basestation through

multihop routes. This multihop relaying results in the problem of uneven energy consumption. In this

section we will analyze this problem mathematically and validate the model through simulation. Different

approaches to address this problem are presented in Section IV.



7

A. Description of the Problem

First, let us see an example illustrated in Figure 1. A homogeneous sensor network is uniformly and

randomly deployed in an L × L square area, where L = M × r meters. We assume the single sink node

S is located in the center. We can divide the whole area into M
2

concentric bands with a step size of r

meters. As in Figure 1, ring 0 is the small circle with radius r meters, and ring 1 is the shaded band

with radius 2r meters. Since a greedy shortest hop routing policy is assumed to be in use, data packets

from outer area hop from ring to ring towards the sink node S. Note that here we assume a packet can

traverse each ring using only one hop transmission, although in reality a packet may be transmitted more

than one time within the territory of a single ring.
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Fig. 1. The existence of “energy hole” around the sink node

Intuitively, the nodes around the sink have to relay more traffic compared to nodes that are farther away

from the sink. Let us do a few calculations to analyze the details. Recall that p = N
Anet

is the node density,

and b is the per node bit-rate. Note that any data traffic generated from the outer rings has to reach a node

in ring 0 first, and then the node in ring 0 relay the data to the basestation. Besides this relaying traffic,

a node in ring 0 also needs to transmit its own sensed data. So, the per node traffic load in ring 0 is:

Loadring 0 =
total traffic in the network

num of nodes in ring 0

=
p(Mr)2b

pπr2

=
M2

π
b. (1)
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We would like to point out that the above calculation is based on our assumption of a perfect MAC layer

(i.e., no collision and retransmission). Here we also assume that the wireless transceivers of nodes that

are not on the transport path would be in sleep mode (for example, see [10]) which has very little energy

consumption. Only the destinated next-hop node will be active and receive the data packet.

Similarly, we can obtain the per node traffic load in the other rings:

Loadring 1 =
total traffic from outside ring 0

num of nodes in ring 1

=
p ((Mr)2 − πr2) b

p (π(2r)2 − πr2)

=
(M2

π
− 1)

3
b, (2)

and more generally,

Loadring ith =
p ((Mr)2 − π(ir)2) b

p
(

π ((i + 1)r)2 − π(ir)2
)

=
(M2

π
− i2)

2i + 1
b, where i = 0, 1, ..., (

M

2
− 1). (3)

From these formulas we can observe that there is considerable difference between the per node traffic

load in different rings. The analytical results for the two cases where M = 8 and M = 6 are illustrated

in Figure 2. Note that here we call it “normalized” traffic load simply because we use the amount of

sensing data generated by a single node as the “unit”. So the nodes in ring 3 have traffic load as one unit

because they are in the most outer ring and do not need to relay traffic for other nodes.

In both cases, the per node traffic load in ring 0 is three times higher than that of ring 1. The ratios

between ring 0 and remote rings (ring 2 or ring 3) are even greater. Since wireless transmission/reception

is the major source of energy dissipation, the nodes in inner rings are expected to consume much more

energy than nodes in the outer rings.
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Fig. 2. Per node traffic load in different rings (when M = 8 or M = 6)

B. Characterization of the Model

The nodes in ring 0 have to relay the traffic from outer rings, in addition to sensing and transmitting

their own data. The per node relaying load in ring 0 is:

RelayLoadring 0 =
p ((Mr)2 − πr2) b

pπr2

= (
M2

π
− 1)b. (4)

So the per node energy consuming rate (ECR) in ring 0 is:

ECRring 0 = α1b + γ1(
M2

π
− 1)b + (β1 + β2r

n)
M2

π
b. (5)

which accounts for three parts of energy consumptions for a single node in ring 0: sensing b amount of

data, receiving (M2

π
− 1)b amount of data from nodes in ring 1, and transmitting M2

π
b amount of data to

the sink. Similarly, we can derive the per node energy consumption rates in other rings:

ECRring 1 = α1b + γ1

(M2

π
− 4)

3
b + (β1 + β2r

n)
(M2

π
− 1)

3
b, (6)
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and more generally,

ECRring ith = α1b + γ1

(

M2

π
− (i + 1)2

)

2i + 1
b + (β1 + β2r

n)
(M2

π
− i2)

2i + 1
b, (7)

where i = 0, 1, ..., (
M

2
− 1).

In order to verify our analytical model, We have done simulations with a 2000×2000 meters network

area, which is the case where M = 8. In our analytical model, we assume that a perfect MAC layer is in

use and that sensor nodes may run in sleep mode to conserve energy when they are not on transport path.

In our simulations, we do not consider energy consumption due to multiple reception issue. We vary the

node density in a vast range, and run the simulation with different random seeds for multiple times under

each node density. Each run of simulation last for 2000 seconds. Finally we obtain the average results

over all simulation runs of all node densities.

Both the calculated and simulated energy consumptions in different rings are shown in Figure 3. We

observe that the simulated results match well with the analysis results, although all simulation results are

a bit higher. We believe the reason behind this slight increase is that, in analysis we always assume an

ideal case that a packet is transmitted from one ring to another using one hop. In simulation, however,

greedy geo-forwarding technique [19] is used to route data packets to the sink. In such a manner, a packet

may travel more than one hop within a single ring in some situations. Just as expected, nodes in ring

0 consumes much more energy compared to nodes in the outer rings. We term this phenomena as the

“energy hole” problem.

Due to the “energy hole” problem, the nodes in ring 0 will expect a much shorter lifetime compared

to the nodes outer rings, given that all mobile nodes are equipped with the same battery source. What is

even worse, once the nodes in ring 0 are depleted of energy, the sink is disconnected from the rest of the

sensor network!

Remarks In the above analysis, we consider a square area and the sink node is located in the center.

We would like to point out that, this problem exists in other scenarios as long as the sink has a fixed

location. Additionally, although we assume a clock-based network (i.e., each sensor node generates CBR

traffic), the result is also valid in event-driven many-to-one sensor networks. If the probability of event
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Fig. 3. Energy consumptions in different rings (when M = 8)

occurrence is uniformly and randomly distributed across the entire network and the sink is stationary, we

can derive the same phenomena over a long time scale.

IV. DIFFERENT ENERGY CONSERVATION APPROACHES

In the existing literature, several approaches have been proposed toward energy conservation in sensor

networks. In this section, we study the effectiveness of these approaches in addressing the “energy hole”

problem.

The main reason for the “energy hole” problem is that some nodes have to relay a lot of traffic for other

nodes in multihop transmissions. To avoid the multihop relaying, we can use a mobile sink, which has

the capability to move around to collect data from sensor nodes. The alternative of a mobile sink would

be a virtually moving sink [20], [21]. The main advantage of these approaches is the flexible control on

what and how sensing data is collected. It is easy to see that the mobile sink approach requires additional

memory/storage in individual sensor nodes. The process may also incur longer delay to collect all data

before a snapshot of the entire network area can be formed, which is not desirable for real time monitoring

in many applications. In this paper we will not include further discussion on this approach.

In the following discussion, we will focus on two energy conservation approaches, deployment assis-

tance, and traffic compression and aggregation.
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A. Deployment Assistance

In practice, we can exploit deployment assistance in order to overcome the “energy hole” problem. In

addition to low power devices and energy efficient protocols, deployment policy is a third major method

to prolong system lifetime, especially when considering the conflict between off-the-shelf devices and

application-specific lifetime requirements. First, different types of applications, or different situations of

the same type of application, may have quite different lifetime requirements. Second, it is more cost

efficient and thus more promising to build general (or multi-purpose) sensing devices, although it is

possible to manufacture application specific sensing devices. Third, it is reasonable to envision that we

will have heterogeneous devices, in terms of battery source, wireless bandwidth, transmission range, and/or

processor speed. Given such off-the-shelf, multi-purpose, and heterogeneous devices, in order to achieve

a variety of application-specific lifetime requirements, it is a natural idea to exploit different deployment

policies when designing and building different sensor networks.

We can divide the large network area into small sub-regions by using a two-tier architecture. Two-

tier architecture has been proposed in existing literature for energy conservation. For example, TTDD

[33] attempts to use geographical grids to exploit high node densities. Using hierarchical deployment can

also smooth out the uneven energy consumption rates in a sensor network. This approach of deployment

assistance is also different from previous work based on clustering (chain forming) [23], [24] in the sense

that it relies on deployment rather than clustering.

Sink Node Assisting Node Sensor Node

Fig. 4. An example of two-tier grid-based architecture
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An example architecture is shown in Figure 4. We assume that there are two classes of nodes, namely,

normal sensors and assisting nodes. Assisting nodes have much higher (compared to normal sensor nodes)

battery capacities and have a larger transmission range. We can deploy a number of assisting nodes to

form a relay layer on top of the normal sensors in the network. The trade-off here is to use some high

capacity relaying nodes to help construct a large scale monitoring sensor network with sensing nodes

which have very limited battery source. The relay network formed by the assisting nodes may use single

hop or multihop transmission when sending data to the sink. We just take the relay layer as a blackbox

for now. Normal sensors send their data to a closeby assisting node, and assisting nodes are in charge of

forwarding the data to the basestation. Since the number of hops within each grid are smaller, the nodes

sitting in ring 0 sub-regions in the grids have much lighter relaying burden compared to a flat network

architecture. Hence the problem of “energy hole” is expected to be greatly alleviated.

In Figure 4, all assisting nodes are shown to be located in the centers of the small grids. However,

considering the ad hoc deployment of sensor networks in practice, it is hard to deploy assisting nodes

exactly where we want. To investigate the impact of position deviation of assisting nodes, we introduce

a new variable in our simulation - PER (position error ratio), which is defined as:

PER =
distance from actual position to the ideal center

transmission range (8)

In our simulations, we will use various PER values representing different degrees of position deviation.

Remarks Besides hierarchical deployment, other deployment approaches include non-uniform deploy-

ment and incremental deployment. In non-uniform deployment, sensor nodes with higher battery capacity

are deployed in inner rings. In incremental deployment, we can obtain a snapshot of current network

energy map through techniques such as eScan proposed in [32], and then decide where to add new nodes

as needed. An equivalent variant to incremental deployment is selective over-deployment, which deploys

redundant nodes to the inner rings. When the network is in operation, only a proportion of nodes in these

over-deployed areas are active while the other nodes are in sleep mode. Since the nodes in inner rings

take turn to be in active mode, energy consumption rates of individual nodes will be reduced. While all

these deployment techniques can help prolong the system lifetime of a sensor network, our focus in this

work is to investigate how to alleviate the “energy hole” problem under a given deployment structure.
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B. Traffic Compression and Aggregation

We can also use data compression and traffic aggregation techniques to mitigate the “energy hole”

problem. As the data packets are relayed from outer rings towards the sink in the center, each ring can

exploit data redundancy and spatial correlation to aggregate and compress the traffic. Much work has been

done on data compression and aggregation in sensor networks (e.g., [8], [9]). Our work on a wavelet-

based approach for time series compression and dissemination in sensor networks was summarized in

[11]. Specific compression and aggregation techniques and related issues, such as data accuracy and error

variance, are beyond the scope of this paper.

Let us assume that nodes in each ring can obtain a compression ratio α < 1.0 on both pass-by traffic

and self-sensed data. Please note that this is a simplified assumption. In real applications, the compression

(aggregation) ratio at each ring is highly related to the specific application and the routing scheme. Here

we assume a fixed compression ratio just to facilitate the analysis and obtain some understanding of the

effectiveness of this technique in mitigating the “energy hole” problem. Since network width is L = M×r,

the network area consists of m = M
2

rings (plus four corners). So, we can obtain such an approximation

of per node load in ring 0:

Loadring 0 ≈ αm−1Dm−1 + αm−2Dm−2 + ... + αD1 + b

= b +

m−1
∑

i=1

αiDi, (9)

where

Di =
p (π(ir)2 − π(ir − r)2) b

pπr2

= (2i − 1)b, where i = (m − 1), (m − 2), ..., 1. (10)

The physical meaning of Di is the per node relaying traffic in ring 0 without compression. In other words,

it is the amount of traffic that is generated from the ith outer ring and imposed on a single node in ring

0. (If there are k nodes in ring 0, k ×Di would be equal to the total amount of data that is generated by
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nodes in ring i.) So, substitute (10) into (9) and we get:

Loadring 0 ≈ b +
m−1
∑

i=1

αi(2i − 1)b. (11)

Because of the fact that:

t
∑

i=1

αi(2i − 1)

=
t
∑

i=1

2(i + 1)αi
− 3

(

t
∑

i=1

αi

)

= 2

(

t
∑

i=1

αi+1

)′

− 3

(

t
∑

i=1

αi

)

= 2

(

α2(1 − αt)

1 − α

)′

−
3α(1 − αt)

1 − α

=
α + α2 − (2t + 1)α(t+1) + (2t − 1)α(t+2)

(1 − α)2

� t2 + 2t (when t ≥ 1), (12)

we obtain:

Loadring 0 ≈ b +

m−1
∑

i=1

αi(2i − 1)b

� b +
(

(m − 1)2 + 2(m − 1)
)

b

= m2b

<
M2

π
b, (13)

where the last term is the traffic load in ring 0 when there is no compression, as shown in Equation (1).

That means, the relaying burden in ring 0 is greatly reduced when some form of compression is in use

(i.e., when α < 1.0).

Remarks In (9) i times of compression are applied to the traffic Di that is generated from the ith ring.

Please note that this expression does not exactly reflect the physical process. Instead, in real applications,

as the data packets transfer from outer rings towards the sink, they will be combined with locally-sensed

data at each intermediate ring, and some form of compression will be applied to the aggregated data

before it is forwarded to the next ring. This physical process is different from applying multiple times of
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compression to one copy of data directly. Intuitively, our analytical model attempts to mimic the hop by

hop transmission process in the physical network.

V. SIMULATION VALIDATION

We have done extensive simulations using a customized program to verify our analysis on effectiveness

of the existing solutions, namely, hierarchical deployment, and traffic compression and aggregation. In

this section we present the simulation setups and results.

In all the simulations we assume that MAC layer is ideal, i.e., there is no collision and retransmission

which can result in extra energy consumption. Since our goal is to investigate the “energy hole” problem,

we assume that each link always has enough capacity to transfer the data. In our simulations, we adopt

the energy model described in Section II-D. If not stated otherwise, we use 250 meters as transmission

range and n = 4 is chosen as the path loss factor.

A. Impact of Node Density

As observed from Equation (7), network density does not affect the energy consumption rates. To

verify this feature, we have done simulations with a 2000×2000 meters network area. The number of

nodes varies from 500, 600, 700, 1000, 1500 to 2000, which represents different node densities. For each

node density, we run the simulation with different random seeds for multiple times. The bit rate is 2000

bits/second. Each run of simulation last for 2000 seconds. Finally we obtain the average results, as shown

in Figure 5.

From Figure 5 we observe that, for each ring, the energy consumption stays at a steady level under

different node densities. That is, per node energy consumption is independent of node density (assuming

node density is adequate to guarantee network connectivity ), which justifies our earlier statement that we

cannot prolong network lifetime by simply deploying more nodes.

B. Impact of Hierarchical Deployment

To investigate the impact of hierarchical deployment, we run simulations with a 3000×3000 meters

network. We use different division granularity by dividing the area into 1×1, 2×2, 3×3, and 4×4 grids.

Correspondingly, the grid width is 3000, 1500, 1000, and 750 meters. Correspondingly, there are 0, 4, 9,
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Fig. 5. Impact of different network node numbers

and 16 assisting nodes, plus the single sink node. Ideally, the assisting nodes are located in the centers of

the grid areas. In practice, however, assisting nodes may be deployed to a place far away from its ideal

position. As defined in Section IV-A, we use different PER values of 0%, 50%, and 150% in our simulation

to represent such kind of position errors. Because sensor nodes always select the closest assisting node

as its clusterhead, the network area is divided into a Voronoi diagram, as illustrated in Figure 6.

Sink node Assisting node

Fig. 6. Voronoi diagram due to deviated assisting nodes

For each kind of grid division, we do multiple runs of simulations with different node densities and

random seeds and obtain average results, which are shown in Figure 7. We can observe that, under all

the three PER values, the energy consumption rate in ring 0 is greatly reduced, even with a 2×2 division
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method.

We would like to point out that the energy consumption in ring 0 in Figure 7 is much higher than that

in Figure 5. This is because we use a larger network width (3000 meters), compared to 2000 meters that

is used in simulations for Figure 5.
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Fig. 7. Energy consumptions with sub-region division

Meanwhile, we observe in Figure 7 that the averaged per node energy consumption in ring 0 is almost

the same for different values of PER. In other words, assisting nodes’ deviation from ideal positions will

not affect the average per node energy consumption in ring 0.

While the PER value does not affect the average per node energy consumption across the network, it

indeed has effect on the Voronoi cell division as shown in Figure 6, which in turn will affect individual

nodes’ energy consumption rate. In order to understand the impact of position deviation, we measure the

relative skewness of the consumed energy of different nodes in ring 0. We define the normalized energy

skewness (NES) of per node energy consumption as the following:

NES =

√

∑k

i=1(1 −
Ei

Eavg
)

k − 1
, (14)

where Ei is each node’s energy consumption, and Eavg is the average energy consumption over all k

nodes in ring 0. The results are plotted as shown in Figure 8. We observe that, for each case of PER, NES

decreases as the number of divisions increases. We also observe that the NES curve for PER = 150% case

is above the other two cases. In summary, the larger the PER, the larger the NES. As each assisting node
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deviates further from the ideal grid center, the assisting network becomes more irregular which results in

more uneven per node energy consumption rates.
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Fig. 8. Impact of PER on energy consumption rates

C. Impact of Source Bit Rate

From Equation (7), the energy consumption rate increases as the bit rate increases. To investigate the

impact of source bit rate, we use a 2000×2000 meters network and vary the bit rates from 1000, 2000,

3000, to 4000 bits/second. For each bit rate, we run the simulation with different numbers of nodes from

500 to 2000. Each run of simulation last for 2000 seconds. The results are averaged over all runs of all

scenarios.

Figure 9 shows the energy consumptions in different rings with varying bit rates. First, we can see

that the simulated results match well with the analytical results. As in Figure 3, the simulation curves are

always a bit higher than the calculated ones, and we believe this is due to the same reason: in simulation,

a data packet may take more than one hop transmission to travel from ring i to ring (i− 1). In summary,

this test shows that the expression in Equation (5), which is based on our simplification assumption, is

a reasonably good approximation of the behavior of the system. Second, we observe that, as the bit rate

increases, the energy consumption in ring 0 increases much faster than those in outer rings. This implies

that, under the same network diameter, higher bit rates will worsen the “energy hole” problem.
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Fig. 9. Energy consumptions under different bit rates

D. Impact of Traffic Compression

In order to investigate the impact of traffic compression and aggregation, we use a 2000×2000 meters

network with different node densities. The bit rate is 2000 bits/second and the packet size is 2000 bits.

When a sensor node generates some data via sensing, or receives some data from other nodes, it will

apply compression and aggregation technique to achieve a given compression ratio. We use 1.0, 0.9, 0.8,

and 0.7 to represent different compression ratios, where a ratio equal to 1.0 means no compression is in

use.

Fig. 10. Impact of traffic compression

The simulation results for different compression ratios are shown in Figure 10. We observe that, as the
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compression ratio increases, the energy consumption rate in each ring decreases. As shown in the figure,

we do curve fitting for each compression ratio case. We observe that, as the compression ratio is reduced

from 1.0, to 0.9, 0.8, till 0.7, the power index of the fitting curve decreases from 1.7091, to 1.6133,

1.5196, till 1.4312. We can say that, the greater the compression degree, the flatter the fitting curve. In

other words, the decrease in ring 0 is relatively greater than that in the outer rings, which helps even out

the consumption rates in different rings.

Fig. 11. Different compression ratios with different network sizes

We do further simulations to investigate the impact of compression ratio under different network sizes.

The bit rate is fixed at 2000 bits/second. We vary the network width from 1000, 1500, 2000, to 2500

meters. For each network size, we do multiple runs of simulations with different node densities and

random seeds, and obtain averaged results over all the runs. Simulation results are shown in Figure 11.

We observe that, as the network width increases, the per node energy consumption rate increases under

all compression ratios. When the compression degree is greater (with a smaller ratio), the acceleration

is also smaller. Specifically, as the compression ratio is reduced from 1.0, to 0.9, 0.8, till 0.7, the power

index of the fitting curve decreases from 1.3306, to 1.1299, 0.9404, till 0.754. With a relatively large

compression degree, the network is more scalable in term of energy consumption rates in different rings,

which justifies that compression and aggregation techniques can help alleviate the “energy hole” problem.
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VI. RELATED WORK

In this section we briefly discuss the related work on bounding the fundamental limits, capacity and

lifetime, in ad hoc and sensor networks. We also talk about some related work on deployment assisted

approaches in this field.

A. Bounding Lifetime

Bhardwaj et al have worked on upper bounds on the lifetime of sensor networks [4], [5]. In [4] the

authors provided an analytical model for the lifetime issues based on trigger-based, many-to-one sensor

networks. In [5], the authors further presented a role assignment technique in constructing the upper

bounds on sensor network lifetime. To the best of our knowledge, these papers are among seminal efforts

in this field. However, they do not identify the problem of uneven energy consumptions in many-to-one

sensor networks.

A cell-based energy conservation technique was proposed in [33]. Nodes in the same cell are selectively

turned on or off collaboratively in order to save energy. Blough et al investigated this technique’s

performance on energy conservation and lifetime extension [6]. Their simulation results showed that this

cell-based technique can extend network lifetime greatly. In their work they assumed a uniform network

density and random distributed peer-to-peer traffic, which is different from the many-to-one traffic pattern

in our work.

In a more recent work [7], Duarte-Melo et al investigated extending sensor network lifetime by

using hierarchical clustering technique. Based on a generic energy model and calculating mathematical

expectation of sender-to-receiver distance, the authors gave MATLAB-based numerical results on estimated

lifetime and optimal network cluster number. While the work in [7] is very similar to the deployment

assistance approach in this paper, we use a totally different model for energy consumption analysis.

Specifically, our work proposed an analytical model for the “energy hole” problem in the many-to-

one traffic pattern. Our analytical reasoning attempts to mimic the hop by hop transmission in physical

networks, and our simulation results were obtained with the widely-accepted NS-2 simulator.
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B. Bounding Capacity

A lot of work has been done on bounding the capacity of ad hoc networks and sensor networks [12],

[13], [14], [15], [16], [17]. All of these works assume that each node generates the same amount of data,

i.e., the per node capacity is uniform throughout the entire network. Among them, [17] discussed the

capacity issue in many-to-one sensor networks. The authors characterized the amount of data required to

reconstruct a two-dimensional field, and the amount of data that can be transported per time slot in a

sensor network. They also investigated the change rate of these variables as the number of nodes increases.

Our work is complimentary to their results. Our analysis justified that in many-to-one sensor networks

those nodes close to the sink have to relay more traffic than others in outer rings, and it would be a good

idea to deploy more bandwidth capacity to inner sub-regions as needed. This type of architecture aware

capacity planning needs further research efforts.

C. Deployment Assisted Approaches

Deployment assisted approaches have been previously proposed to improve the performance of ad hoc

and sensor networks [29], [30], [31]. In [29], Ahmed et al proposed to deploy some assisting gateways in

a mobile ad hoc network in order to provide better connectivity and facilitate scalability. Based on some

assumptions they derived an approximate algorithm to compute the optimal positions where the gateways

should be placed. In a more recent work [30], Ye et al proposed to deploy some reliable nodes in order

to provide redundancy and better reliability in ad hoc routing protocols. Closer to our work, the authors

in [31] investigated the infrastructure tradeoff in sensor network deployment.

VII. CONCLUDING REMARKS

In this paper we address the uneven energy consumption issue in sensor network. Our goal was not to

develop a new energy conservation technique. Instead, we were to develop an analytical model for the

“energy hole” problem in many-to-one sensor networks. Based on the understanding of the characteristics

of the “energy hole” model, we study the effectiveness of various existing techniques towards mitigating

this problem. These techniques can facilitate balanced energy consumption rates in different parts of a

sensor network, and thus achieve more even lifetime across the network. Simulation results are used to

verify our analysis and the proposed solutions.
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We would like to point out that the “energy hole” problem is inherent in many-to-one sensor networks,

and thus the best we can do is to reduce inner ring’s energy consumption and achieve more even energy

consumption rates across different rings. Although many-to-one sensor networks suffer from the “energy

hole” problem, it is a required communication model in many applications, as long as we want to facilitate

some form of central decision-making functionality in the sensor networks.

In many-to-one sensor networks, energy consumption, lifetime planning and capacity planning are

closely related to each other. One of our future work plan is to investigate possible combinations and

trade-offs among these issues in sensor network design and deployment.
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