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Abstract

We study the deployment of data back-haul nodes for wirelessorks with energy constraints. We address the
following problem: given the required lifetime of a sensetwork, the energy constraint of back-haul nodes, and the
area to be covered, what is the minimum number of nodes ndedashstruct such a back-haul network and what
is the corresponding deployment scheme? Finding an effideployment scheme involves location management,
routing, and power management. We focus on linear netwarkisfermulate a deployment optimization problem.
We then propose and analyze a greedy deployment schemectiiates close to optimal performance. We reveal
the closed-form relationship among different design patans, namely, the number of sensor nodes, the desired
lifetime, and the coverage distance. We also study thetedfemiscellaneous power consumptions and non-uniform

data density, and consider extensions to planar networks.

. INTRODUCTION

We study the deployment of data back-haul nodes for wirahesaorks with energy constraints. An
application scenarios is in wireless sensor networks. Famynsensor-network applications, the desired
lifetime of the network is on the order of a few years. It mayififeasible or expensive to change batteries
in sensor nodes once a wireless sensor network is deployes, T is critical and challenging to deploy
sensor nodes effectively to form long-lived sensor netwarkder energy constraints.

Hierarchical structure has been considered as a necessitgarje wireless systems. An example is
shown in Figure 1. The bigger gray nodes represent more @apeald expensive nodes in the higher
hierarchy that are responsible for data processing and baaokng. The smaller dark nodes represent
sensing nodes that collect information on interested evandl report to nearby gray nodes for processing

and communication. Consider a real-world example. Crosstesiiology Inc. supplies both smaller and



less expensive mote series and more sophisticated and ssxpépateways series. We can consider the
mote series as sensing nodes and the Gateways series asadithabling nodes in the Figure. In a
remote area, both sensing nodes and data back-haul noddsecamergy constrained, which limit the
lifetime of a sensor network. In this study, we focus on datekbhaul nodes that consume more energy
for communications and are mission-critical. Because tmegkes are important and usually expensive,
strategic deployment of these nodes is justified. In thisspape study the deployment of these nodes to
satisfy the desired lifetime requirement. The degrees eddom for such a design are multi-fold. They
involve topology management, power management, and igputin
We focus on a many-to-one sensor network. In a many-to-ori@onle data from all nodes is
directed to a sink-node/fusion-center. Many-to-one comigation is typical in sensor networks used
for monitoring/surveillance purposes. Unlike a distrémlijpeer-to-peer wireless networks, the traffic load
is highly asymmetric in a many-to-one network, i.e., nodeser to the sink node have heavier relay
load, as illustrated in Figure 1. Thus, the traffic load and torresponding power consumption are
location-dependent. The lifetime of a network can be lichiby nodes with heavy traffic load or power
consumptions. This problem is adequately captured in tloidkw
We use data density to model the amount of data generatedensmrsnetwork and assume that the

data density is uniform unless otherwise stated. Given tieegy constraint and data density, our objective
is to answer the following question:

What is the minimum number of data back-haul nodes we needmstremt a sensor network

and how these data back-haul nodes should be placed suckhéhaetwork can satisfy the

predetermined life-time and coverage requirement?
An alternative question isgiven the number of data back-haul nodes, and the desired life time of the
sensor network, how large an area can this sensor network cover and how? Yet another objective is:
given the number of nodes and the area to be covered, what is the maximum lifetime of the network and
what is the deployment scheme to achieve it?

In this paper, our primary focus is dimear sensor networks, in which the data back-haul nodes are



deployed in a linear topology. Such a topology can be usechar@w and long sensor network, as shown
in Figure 1. This is justified by real world examples. For amste, the sensor network deployed on Great
Duck Island is in a narrow-and-long shape (about 50 nodegdma 5 nodes wide) [17]. Other applications
include sensor networks for border surveillance, highwaffit monitoring, safeguarding railway tracks,
oil and natural gas pipeline protection, and structural imooimg and surveillance of bridges and long
hallways. In addition, we have also provided heuristicsdnalyzing planar networks using the analysis
of the basic linear topology.

We assume the deployment of data back-haul nodes is cargfidhned and controlled instead of
randomly performed. First, in most current sensor netwogplayments, sensor nodes are manually
deployed instead of randomly thrown into the field of interdaurthermore, because data back-haul
nodes are mission-critical, expensive, and in a relatigahall number, careful planning and deployment
is justified. Our numerical results show that the lifetimeaofandomly deployed network is an order of
magnitude lower than that of a carefully deployed one.

The paper is organized as follows. We discuss related wotkeiction II. In Section Ill, we elaborate
the problem and introduce a deployment optimization probler Section IV, we propose and analyze
a greedy deployment scheme. We show that the performandeeajreedy scheme is close to optimal.
The closed-form analysis of the greedy scheme allows usderstand the relationship among the design
parameters. We study the effects miscellaneous power ogigans and non-uniform data density, and

consider extensions to planar networks in Section V. Theep&pconcluded in Section VI.

II. RELATED WORK

In this section we briefly discuss the related work on the ciéypand lifetime of wireless adhoc/sensor
networks. Bhardwagt al have provided upper bounds on the lifetime of sensor netsvfitk [2] where
sensor node locations are given. In [13], the authors pepdsansmission range distribution optimization
scheme to maximize the network lifetime given fixed nodetiocs. In comparison, our work is to address
the deployment issue of sensor networks. Energy consenvamd lifetime extension is investigated in

[3] using cell-based techniques [20]. In comparison, ourkwfocuses on many-to-one networks, which



is significantly different from random distributed peergteer networks. In [12], the authors study the
problem of placing the sink-node to maximize the life-tinfele network in a two-tiered wireless sensor
network. Furthermore, the placement and power managerhadddional relay nodes are also considered
in [9]. The joint design problem is formulated as a mixedeger nonlinear programming problem and
heuristic algorithms are proposed. Our work is differenthia sense that we assume only one fixed sink
node. In addition, the relay nodes do not have their own trédiad in [9], which also differs from our
scenario.

The most closely related work is by Ganesaral [8], where our work differs in terms of the data
collection model. The problem is not solved for the generaldet in [8], and the optimal scheme
presented in [8] assumes that each node has the same amalataokgardless of its coverage distance.
In comparison, we assume uniform data density across theoretand thus a node that covers a larger
distance has more data. In our model, more complexity islveebbecause the data volume at each node
is a function of its distance from its neighboring node. Ihestwords, the total amount of data relayed
to the fusion center is linearly proportional to the totahrher of nodes in [8], while it is proportional
to the total distance that the network covers in our work.slhheir results do not yield our results. We
justify our assumption using the following example of a leotfishe surveillance network. Assume that
events happen uniformly and randomly in the surveillan@aaihen it is reasonable to assume that the
total number of events reported to the fusion center is ptapwl to the length of the borderline instead
of the number of nodes deployed. In other words, a node thetrs@ larger area/distance observes more
events and thus generates more data. This phenomena ®ufzalyi evident when we consider the higher
layers in a hierarchical network.

Maximum lifetime routing in sensor and ad hoc networks hasenbstudied extensively in the literature,
see e.g., [5], [21], [15], [18], [10]. Most of proposed schesmassume given node locations (potentially
mobile in ad hoc networks), which is different from the dgph@nt requirement. On the other hand, for
a given deployment, the proposed schemes can be used sdé¢hbfietime of the deployment can be

numerically evaluated, and thus beneficial to obtain goodd2ployments.



Our preliminary work is presented in [6], [11]. We extend frevious work by including studies on
miscellaneous power consumptions and non-uniform dataityeas well as heuristics on planar networks

in this paper.

[11. PROBLEM DESCRIPTION

It is well-known that in a many-to-one communication netwahe sink node is usually the capacity
bottleneck. It is also noticed that the sink node can be tleeggrbottleneck. We elaborate the problem in
the context of a linear network. Assume that the sink nodd theaend of the network. Data back-haul
nodes closer to the sink node will have much higher relay.l¥dden evenly spaced, nodes close to the
sink consume more power and die quickly, which causes thelegs sensor network to be disconnected.
In this case, nodes closer to the sink node limit the lifetioiea sensor network. There are different
approaches to alleviate the problem, including allocatimgye energy to nodes closer to the sink node,
placing more nodes, and placing nodes closer in heavy lcsasaAnother possibility is to perform load
balancing, i.e., a node with lower traffic load can send datx tonger hops to release the burden of
other nodes. We consider all these possibilities in the paper objective is to deploy data back-haul
nodes in an optimal way such that the network can cover ag langarea as possible given the number

of nodes available and the desired lifetime of the network.

A. System Model

In this paper, we assume a perfect medium access contro[£3]jrj8]. Due to low energy supplies and
low duty-cycles of wireless sensor networks, many reseaffdnts have suggested (localized) TDM-type
of access schemes, which is in accord with our assumption.

We use the following communication model in the paper. L ée the distance between the sender and
the receiver, and® be the transmission power. Then the data rats proportional to the received signal
strength; i.e.,R = P/d", where~ is the distance loss factd,< v < 5, andj is a constant, which can
be considered as the signal strength requirement. This Im®dedely used in the literature, e.g., [7],

[4]. We are interested in the case wheres relatively large (e.g., at least on the order of tens oferst



We assume that background noise is at a constant level, anefdhe the received signal strength infers

signal to noise ratio (SNR). Thus, the energy consumptiorottve&y one unit of data over distandds
Px L= Bd (1)
7= .

Note that we only consider the transmission power here. rQib@/er consumptions, such as receiving
power and miscellaneous power at the transmitter, are deresi in Section V-A.

In practice, due to shadowing and fading phenomena in thesimssion environment, the received
signal strength is often random. However, without preaermation about the territory and considering
thelong-term average, it is reasonable to assume a direct relationship betwestardie and per bit energy
consumption [16]. Thus, we use Eq. (1) as a the model to utaaetgshe deployment issue in wireless
sensor networks.

The ideal bit-energy model in Eg. (1) can also be extendedrtmie practical power-goodput model.
Basically, we explore the fact that goodput increases as $ibiRRases. First, with the advances in DSP and
sensor developments, newer versions of sensors, esgauiate expensive and sophisticated ones, have
the capability to adjust data rates based on channel conditin addition, for a given modulation/coding
rate, where SINR is higher, the BER (bit error rate) is lowed #hus the probability of failure is smaller,
which implies higher goodput and thus lower energy consionpAll results in this paper can be directly
applied to systems with power-goodput model where persi@tgy consumption is a polynomial function
of distance. Such a model can take into account less-thesl-lthrdware realization and capture a less
aggressive correlation between energy and distance.

We should note that the communication model does not imposenatraint on the transmission
range. Instead, it is possible for two far-away nodes to camioate with each other at the cost of high
transmission power. Thus, the model is general. On the bidned, imposing an additional range constraint
will not change the problem significantly because commuitna over a long link is penalized in teams
of power consumption. Furthermore, the proposed greedyritign does not rely on the assumption of
unlimited communication range, yet yields close-to-optirperformance. Thus, the impact of allowing

large communication range is negligible.



We assume that each unit coverage distance generatgisof data per unit time. An example where this
assumption holds is a surveillance sensor network wherédnts happen uniformly along the surveillance

line (e.g., a border line).

B. Problem Formulations

Let £ be the initial energy of each node afilbe the desired lifetime of the sensor network. We
are interested in the case of a relatively lafGeLet d; be the distance between tlih the (: + 1)th
nodes,i = 1,--- ,n — 1, andd, be the area covered by nodeas shown in Figure 2. We assume that
the nodei will collect all the data between nodés— 1) andi, which isd;_;c per time unit. Therefore,
d;_ is the coverage distance of nodeNoden is the sink node. We havé;, < D for all i, where D
is the predefined maximum distance between two nodes. Inabe af a hierarchical network) limits
the distance between a sensor node to its neighboring dakahaal node (i.e., the cluster head) in the
higher hierarchy.

We first introduce Problem IDEAL. In this problem, we assuima tenergy can be allocated arbitrarily
among nodes. In other words, we only have a total energy @nstGiven(n — 1) nodes, the total
initial energy is(n — 1)E. (Note that node: is the sink node.) This is an idealized case, and its result
serves as denchmark of the system. When energy can be allocated arbitrarily anmanaigs, the network
dies only when there is absolutely no energy left in any nodésis, the definition of the lifetime of
such a network is very general. We will show later that thefqrarance of the proposed scheme under
more realistic assumption is close to that in the benchmase,cand thus the effect of arbitrary power
allocation is limited.

When energy can be allocated arbitrarily among nodes, mutima linear network is greatly simplified.
A necessary condition for optimality is that noéishould relay all data to nodet 1, its nearest neighbor
toward the destination becauge+ b)” > a” +b?, wherea, b > 0 and~ > 1. In other words, it consumes
more energy to transmit data over longer hops than over pellshorter hops. This holds when energy
can be arbitrarily allocated among nodes.

The objective of Problem IDEAL is to find a deployment schemedver the maximum distance given



the number of data back-haul nodes and the lifetime reqenénThe problem is formulated as

n—1
marmaize d; 2
" ; (2)
n—2 n—1 (n . 1)E
subj ; R —
jectto 3 . cd; Z di < — (3)
1=0 k=i+1
0<d; <D, i=0,---,n—1. 4)

In Eq. (2),cd; is the amount of data collected by no@iet 1) in one time unit and it is relayed to node
(¢ +2), ..., and nod€n — 1), to noden. Furthermore(n — 1)E is the total initial energy and’ is the
required life time, and thug: — 1) E /T is the maximum amount of energy consumed per time unit by all
nodes. Therefore, Eq. (3) is the energy constraint. Eq.94he maximum distance constraint. We note
that it can take several hops for a packet (bit) to be forwétddhe sink, and thus the energy consumption
could happen at different time periods. The problem formmoeassumes steady state. This is reasonable
in a long-lived sensor network, where the time period to Bmdva packet, on the order of seconds, is
much smaller than the life-time of the network, on the ordemonths or longer. Problem IDEAL serves
as abenchmark because of its arbitrary energy allocation assumption hadcorresponding definition of
lifetime. A similar problem can be formulated to introducwlividual energy constraints on each node.
We refer interested readers to [11] for details.

We note that Problem IDEAL is not a convex optimization pesbl because the domain is not a
convex set. However, because the number of variables vediasmall, we use théconmin function in
matlab to obtain the solution numerically. Next, we preseihteuristic deployment scheme that achieves

close-to-optimal performance and enables analysis.

IV. GREEDY DEPLOYMENT SCHEME

Problem IDEAL serves as benchmark because of its arbitrary energy allocation assumption hed t
corresponding definition of lifetime. However, such a he¢eneous energy allocation may be inconvenient
and impractical in production and deployment. In this setGtwe present a greedy deployment scheme
where each node has an individual (usually homogeneousy\erenstraint. The intuition of the greedy

scheme is as follows: a node relays data for all nodes thaugieer away from the sink. It tries to push



its data as far away as possible given the lifetime and enepggtraints, which determines the distance
to its nearest neighbor toward the sink. To elaborate, tte taaffic load of node is ¢ (Zj;t di>. Let

x; be the pushing distance; i.e., the maximum distance tha¢ h@@n push this amount of data given
the energy and lifetime constraints. We ha¥(e Zj;% dj)x] = % The algorithm is greedy in the sense

a node tries to push its data as far away as possible underotistraints. Furthermore, nodedoes

not directly send data to nodg where; > i 4+ 2, because it consumes more energy. Because of the
maximum distance constraint, we haye= min{D, z;}, whered; is the distance between nodesnd

i + 1. Therefore, the greedy algorithm can be stated as:

do=D

g ()
dZ:m1n<D,<M) >7 Z:1,7n—1

In the greedy algorithm¢; can be calculated iteratively. We note th&tis monotonically decreasing
— a node with heavier relay load is compensated through alamtehnsmission distance. The greedy
algorithm can be easily adopted to more general cases. Fon@®, if each node has heterogeneous
initial power constraintsf;, we can replace” by E; in Eq. (5). If data density is non-uniform, we can

replacec y"'"y d; by the aggregated load from distance 03— d;.

A. Numerical Comparison

We compare the performance of the greedy scheme with thabbtdém IDEAL. Figure 3 compares the
numerical solution of Problem IDEAL and the performancehaf greedy one. Problem IDEAL serves as a
benchmark because of its arbitrary energy allocation aggamand the corresponding general definition
of life time. Define a constant’ = E/(cT). When D > C/0+1) we havez; < D for all i. This is
the case where the required lifetime is long and/or theaihénergy in each data back-haul node is low,
which is of our primary interest. In the numerical resdlt= 1, D = 1, andn = 50. We sety = 4 for
all numerical results in this paper unless otherwise sgetifn Figure 3, the x-axis is the index of nodes
and the y-axis isl;, which is the distance between two consecutive nodes. Ifetfend,D,, is the total

coverage distance givem nodes. We notice that the difference in performance of tleedy algorithm
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with the optimal one is very small. Figure 4 compares the ggnatlocation of the two schemes. In the
greedy scheme, all nodes consume the same amount of enemgfibition in Eq. (5). In the optimal
solution of Problem IDEAL, we notice that the leftmost nodes/e slightly higher energy allocations,
which infers to the slightly larged; in Figure 3.

Figure 5 compares the coverage length of the greedy algositith the optimal solution of the Problem
IDEAL where D = 1 andC' = 0.01, 1, 10, respectively. (Note that smaller values ©f are of more
interests since they correspond to long network lifetimieipcludes both cases wheie > C(/0+1)
and D < C(/0+1) The x-axis is the number of nodes and y-axis is the totahdist covered. For each
fixed C, we can see that the performance of the greedy algorithmmsstlindistinguishable from that
of the optimal scheme with arbitrary energy allocationguifé 6 shows the results far= 2.

In summary, the advantage of allowing arbitrary energycallon is negligible; the greedy algorithm
where each node has the same initial energy performs vety getoverage distance is almost equal to
that of the optimal deployment. Thus, it justifies the greddployment of homogeneous data back-haul

nodes.

B. Performance Analysis

Because the greedy scheme achieves close to optimal perfoemgs closed-form analysis can provide
insight into the design of wireless data back-haul networksch is one of the reasons to introduce the
greedy algorithm. In this section, we obtain a closed-foppraximation for the greedy algorithm. Let
D; = Z;:O dy, 1.€., D; is the total length covered by nodes 0(ie- 1), which can be calculated iteratively

using Eqg. (5). We claim a closed-form approximation/af as follows:

1\ 71
D, ~ C71 (wr z) L i=1,---,m, (6)
v

To justify our claim, we only need to show that the above equasatisfies Eq. (5) iteratively. Assume

Eq. (6) hold fork =0,1,--- ,7 — 1. By Eq. (5), we have

E ’ C g 1 vy >71“ .
d = —_— == — ~ O'Y 1 —_— 9 k: ]_"" ,'l/_ 1. 7
’ <c5T2;;}) dj> (Dk:> <<7+1>k )
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In the above equation, the first equality holds by definitign.((5)) and the second by Eq. (6). Then, we

have

i—1 ; _1 e

b Y 7+ 1 [y + 1\
Di = Sdptdo~ | 0 (— ) drtdo~ O 8
2 it d f e ((7+1)x) Pl ( y ) ®)

Thus, Eq. (6) is an approximation of the total distance ceddry: nodes in the greedy algorithm. In
Eq. (8), approximations occur when we replace a summatidh an integral, and when the impact of
dy (i.e., the boundary effect) is ignored. The approximat®nery close, especially for relatively large
(e.g.,n > 5). We compare the numerical result to a network up to 1000@sofbr(0.01 < C' < 10, and
observe that the maximum discrepancy between the approgmand the actual value is smaller than
0.2% for all n, where5 < n < 10000. Whenn is reasonably large, the approximation of summation by
integral is relatively small.

This closed-form approximation in Eq. (6) reveals the refehip among the design parameters,
the number of data back-haul nodes neededihe life time of the data back-haul network, the total

distance that the network can coverdd=¢ D, when there are: data back-haul nodes). We have

L Ticﬂ (%“n)w )

Having any two design parameters fixed, we can obtain thd.tRor example, giveff’, n LWTH, which
indicates a super-linear increase in the number of nodeiregwith respect to the coverage distance.
Given L, n T is sub-linear. In addition, the marginal effect of addingeanore node is sub-linear.
Suppose thaty = 4 and all other parameters are fixed. To double the lifetime sémsor network, we
only need19% more data back-haul nodes. To double the length of the seretaork, we need 38%
more nodes.

Finally, we compare the greedy scheme with the uniform depént scheme. In the uniform deployment
scheme, nodes are evenly placed along the line. Assumeutiagalecision is to relay data to the nearest
node toward the sink node. Because nade 1 is the closest to the sink node and has the most heavy
relay load, it exhausts its energy first. Thus, its lifetimmaits the lifetime of the network. Our analysis

show that givem, E andT, the greedy scheme can covér + 1)/v)"/*+Y larger in distance than that
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of the uniform deployment [11]. For example, the coveragstatice of our greedy scheme2¢’% and
19% longer than the uniform one when= 3 and~ = 4, respectively. Alternatively, the lifetime of the
greedy deployment i§l +1/+)" times of that of the uniform deployment, which287% and244% when

v = 3 and~y = 4, respectively.

V. DISCUSSIONS

A. Miscellaneous Power Consumptions

In a wireless device, power consumption is multi-facet.dhgsumes energy to keep the circuit awake,
to receive and process signals, etc. Such power consumigtiaaually not negligible in practice. For
instance, the power consumption for reception is usuallyhef same order as that for transmission. In
this section, we consider such miscellaneous power consomspand their impact on deployment.

To conserve energy in a wireless device, the device shouldpuieinto sleep mode when no
transmission/reception occurs. We assume that the energmption in the sleep mode is negligible. We
assume perfect synchronization, and thus the transmititetree receiver are awake only when transmission
occurs. We also assume that data back-haul nodes do notmesémnsing or the power consumption of
infrequent sensing/event-driven sensing is negligible.

Let P, be the amount of additional power consumed by the tranamitt@rder to keep the circuit
“awake”, P, be the transmission power, i.e., the power emitted by therarat, andP,,,,, be the maximum
transmission power allowed by the power amplifier, where P, < P,,... Thus, P, + P, is the total
power consumed by the transmitter. LBt be the total power consumed by the receiver, including the
power consumed by a circuit, to receive signals, and to pariignal processing. Given the transmission
power P, and the SNR requiremernt, if the distance between the transmitter and the receivéy tken
the achievable data transmission r&és R = P,/(d”). The total energy consumption by the transmitter
to send one bit over distanckis

1 d'7 Pmax_'_Pa *
S I o P e e ) (10)
R Pt Pmaz

where the inequality holds whef, < P,,.., and E; is the minimum amount of energy consumed to
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transmit a bit. The energy consumption by the receiver ferkt is

1 Bd P,
E, = —(P)="2"(P)>pBd"—" 2 . 11
7 (F) Pt( ) >3 p =B (11)

Again, the last inequality holds wheR < P,,.., and E is the minimum amount of energy consumed
to receive one bit. Thus, it saves energy to transmit withrtteximum power at thdiighest data rate
instead of lower power at lower data rate because this mdas the smallest amount of time and thus
reduces the miscellaneous power consumption at both thenwigter and the receiver. This accords to
current research findings [19]. We assume from now on titesismitting at the maximum power is the
transmission mode used. The challenge remains to detetimndeployment and routing strategy.

Let us consider the tradeoff between long and short hopshdtitioss of generality (WLOG), we
compare a long hop of distanég versus two short hops with distancesand s,, wherel; = s; + ss.
Assume all nodes transmit &, as discussed earlier. The total energy consumption to mdeusing
the long hop of distancg, is

1 Praz + Po + P,
Elong:E(Pmar—i_Pa—i_PT):ﬁlg P .

Using two short hops, the energy consumption per bit is

»ypmaz+Pa+P7'

»YPmaac—FPa—i_Pr
Pmaac .

Eshort = ﬁ(dl) 2

+ B(da)

For~ > 1, we have(l;)” = (s1 + s2)7 > s] + s3, and thusE,,,,;, > Esno+. The intuition is that the total
awake time for two short hops is shorter than that of a longwbpn~ > 1 and the rate is proportional
to the received SNR. Note that the important factor is that(thaximum) rate decays super-linearly
with respect to distance, i.ey, > 1. Thus, the time to transmit and receive one bit grows supesgily
over distance and so does the total power consumption. Inearlinetwork, long hops can always be
broken into two or more shorter hops iteratively, and thusrtshops are preferred under the above stated
assumption.

Compared to the case where we only take the transmission poteeaccount, we notice that the

energy consumption to transmit and receive one bit is sdafea constant factofP,,.... + P. + P,)/ Praz-
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We define

. Pmax
P P+ Pot+ B,

as the energy coefficient. In other wordsis the ratio of the energy that is used for signal transmissio
to the total energy consumption. A node consurgs times of energy to handle one bit compared to
the transmission-power only case. Because a node (excepinth@ode) receives and transmits the same
amount of data, this is equivalent to scaling the originargy by a factor ofp.

Note we make the assumption that a data back-haul node escdata from sensors in the lower
hierarchy and does not perform sensing itself. Furthermeszassume that a node consumes the same
amount of energy to receive one unit of data from a neighigadista back-haul node and from sensors in
the lower hierarchy. This assumption may not always be tegabse a sensor node in the lower hierarchy
may have smaller transmission power and consumes longer tbntransmit one bit to data back-haul
nodes. However, for nodes with a large relay load, the diffee is small. The larger the value ©fthe
better the approximation. The difference is more signifidan nodes far away from the sink node.

In summary, the effect of miscellaneous power consumptaonbe well modeled by a scaling factorlt
may seem counterintuitive that smaller hops are desiralda ehen miscellaneous power consumptions
are taken into account. The reason is that when nodes arerctbe reliable data rate is higher, the
aggregated time for transmission/reception is shorterniscellaneous power consumption is lower, and

thus the total energy consumption is lower.

B. Non-uniform Data Density

In sensor network applications, data density may vary aveations. For instance, different portions of
a road may experience different volumes of traffic and ietefiens are in general busier. To model this
phenomena, let(x) be the density at locatiomn, wherez > 0. The sink node is located at the rightmost
location. The greedy algorithm can be extended to the ca#ie man-uniform data densities along the

coverage area as follows:

d; = min (D,xi : Bl(i)x] = E) , (12)
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wherel(7) is the load for node to forward; i.e. /(i) = fozé;é @ c(x)dz. In words, in the greedy algorithm,
node: tries to push its load(:) as far as possible within the constraint which reflects the same intuition
as in Eq. (5).

Next, we show numerical results in the case of non-uniforta density. We consider a linear network
of length 10000(m). The data density along the linear network is not unifoa®s shown in Figures 7
and 8, respectively. In both figures, the x-axis represeation and y-axis shows the variation in data
density. Figure 7 represents a linear network with locatiarying data density, e.g., a border line with
different volumes of traffic. Figure 8 represents a networthveursty data traffic, e.g., a highway with
exits. We assume that the data density profile does not chevgetime and can be estimated when
the sensor network is deployed. When the lifetime of the ndtvusrelatively long, short-term variation
(e.g., rush-hour vs. mid-night) is smoothed. In additi@anevaluate the impact of estimation errors of data
density on the network lifetime, a zero-mean Gaussian esitam error is added to the actual data density
profile to create a noisy estimate, as shown by the lower plaaich figure. The standard deviation of
the Gaussian-distributed error is 20of the actual value of the load, which we consider as moderate
estimation errors.

We compare the performance of the greedy scheme with pémfegtledge of the data density profile,
the greedy scheme using noisy estimate, uniform deploynaewt random deployment. We first use the
greedy algorithm in Eq. (12) to calculate the number of datekkhaul nodes needed to monitor the linear
network, denoted as. The greedy algorithm is then used based on the noisy estilmdata density (the
lower plot in each profile). In the uniform deployment,nodes are evenly distributed along the linear
network. In the random deployment, nodes are randomly and uniformly distributed along the.line
all deployments, each node forwards data to its neareshibeigoward the sink node, which is at the
end of the linear network. The network is considered deadnvthe first node runs out of energy.

Figure 9 compares the greedy deployments with and withdirhason errors on the data density. The
x-axis is the node index, and y-axis represents the disthet@een two consecutive nodes. The two

curves of the greedy deployment with and without estimaéioors (noted as “greedy” and “w. error” in
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the legend) are almost indistinguishable. To achieve tisgretk lifetime, the greedy deployment requires
243 nodes with perfect density information. In the presewicestimation errors, 244 nodes are required
and the deployment achieves®®f the desired lifetime. The preliminary result shows thatependent
estimation errors have little impact on the performancenhefdreedy deployment. This is due to the fact
that the aggregated load at each node is more important lleagensity at a location. Because estimation
errors are independent, tlaggregated estimation error at a particular location is small comparethe
total aggregated load, due to the central limit theoremnioderate or large values of Therefore, the
impact ofindependent estimation errors is small. On the other hand, if estima¢ioors are correlated, say
a large portion of the network is under-estimated, the impai€ be larger. The impact of such correlated
errors needs to be further investigated.

As a reference, we plot the curve of a greedy deployment winerelata density is uniform with the
same average density (average over the whole linear netwehich is noted as “unif” in the legend.
This deployment requires 256 nodes to achieve the desiietdrie. The difference between the uniform
and non-uniform density cases is most significant when a lata density exists and thus the distance
between two consecutive users are larger (e.g., nodes)20-50

In the uniform deployment; (n = 243) nodes are evenly spaced in the linear network. The lifetime
the uniform deployment i84% of the desired lifetime. This is in accordance with the repotsented in
Section IV. In the random deployment, we run 100,000 inddpetrealizations, where in each realization,
n (n = 243) nodes are randomly and uniformly deployed. The averagtrit of the random deployment
is less thanl% of the desired lifetime. This is due to the randomness in tyg@layment of nodes; i.e,
there exists consecutive nodes with a large gap with a highatnility. The larger the network, the worse
the lifetime of the random network in comparison. This flis$i strategic deployment of nodes and is in
accord with theoretical results on the coverage and coivitgqiroperties of randomly deployed networks
(e.g., [14]). We also note that nodes closer to the sink areertikely to fail due to their heavier loads.

Bursty data density is also considered, as shown in Figuren8la® comparison is shown in Figure 10.

In this case, the estimation error costs the greedy algoritb additional node and’2 decrease in the
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desired lifetime. The uniform deployment achieve$i@ercent of the desired lifetime and the random
deployment achieves less thatt.1

While we consider the estimation error on data density akavather type of error occurs on deployment
due to inaccurate geographic measurements or physicatraimms. We expect the greedy deployment
scheme to be robust against small independent deploymemseketd; be the desired deployment and
d; be the actual deployment with errors. The lifetime of theuacteployment is;) times of the desired

one, where
S d
n= mini#.
(dl)’y Zk:o dk:

However, as» increases, the performance deteriorates because it islbduyy the worst-case scenario.

We hope to study the issue further in the future.

C. Planar Networks

The deployment in planar networks presents great chalfengainly due to the large search space of
decision variables. For instance, even with the assumpfi@mbitrary power allocation, we cannot reduce
the search space of routing possibilities much due to plessilangular routes. Withx data back-haul
nodes, we havez + z? continuous variables to optimize. In addition, the coveragea of each data
back-haul node needs to be determined so that the totalmirssisn power is minimized while it is
guaranteed that all sensors in the lower hierarchy can beeobed to at least one back-haul node. In the
following, we present two heuristics for the planar depleyin

Consider a square area where the sink is located at the riglet @orner. A square-shaped deployment
is shown in Figure 12. There ar€ nodes and nodén,n) is the sink. The deployment is symmetric:
d; is the distance between nodgs;j) and (i + 1, j), and the distance betweén i) and (j,i + 1). Each
node collects data of the left-lower rectangular. Assumlg twtal energy constraint is considered. When
~v > 2, to send data fronts, j) to (i + 1,5 + 1), it is more efficient to send to node, ; + 1) and then to

(t+1,j+ 1) because

<« [d? + d§>7 > (d] +dJ).
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In this case, routing is simple — a packet is routed eitheightror upper neighbor until it reaches the

sink. Formally, the problem is formulated as

n—1
maxgmze Zz:(; d; (13)
: — — (n? — 1)E
subjectto Y > "edid;B ( > A+ Z d”) < (14)
=0 j=0 k=i+1 k=j+1
<d; <D, i=0,---,n—1 (15)

Eq. (14) is the total energy constraint, wherkgd, is the volume of data collected by node+ 1,5 + 1)
ands(> - z+1 d7+zk i1 d)) is the energy to relay one bit to the sink from this node. Nb& Eq. (13)
is not a general 2D deployment problem because we limit tlyeegeof freedom in allocating nodes.

An alternative is the strip deployment, shown in Figure 1he Twhole area is divided into a number
of strips, where the result in the linear network can be a&gpin each strip. In the figure, the greedy
algorithm is used, shown as circles. At the right edge, a eldinear network is deployed vertically to
pull data to the sink node, shown by the hexagon nodes. Theedaployment is similar to the proposed
in [8], where linear approaches are extended to planar mksauy dividing a planar network as strips or
pieces of pies.

We compare the performance of the two schemes. For a fixesle solve Eq. (13) numerically to
determine the maximum coverage giveh nodes. The perimeter of the area is denoted.byVe then
run the greedy algorithm to determine how many nodes areedetdcover the same area. The number
of horizontal rows in the strip deployment is determinediby= | L/ D] because the maximum width of
a strip isD. The width of each strip i&,, = L/m,.. The load for theth node in the strip isw, 22;10 dy.

Eg. (5) can then be used to determine the distafic&he vertical line at the right edge is determined
with data densityew, L per strip.

In Figure 13, we show the perimeter of the coverage area arscida of n under different values of
C. In Figure 14, we compare the number of nodes needed to cheesame area by the two schemes.
In the figure, the x-axis represents the square deploymeatewi? is the number of nodes needed, the

y-axis represents the strip deployment Whefgip is the total number of nodes needed. The dashed line
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is the diagonal. The square deployment is better if the cisredove the diagonal line (e.d@.,= 10), and
the strip one is better if the curve is below the line (e@+= 0.01). We note that square deployment is
preferred wherC' is large, and strip one preferred whéhis small. SmallC’ implies small energy budget
per bit (e.g., londl” or highc). In this case, it is more efficient to aggregate the data tewalfeavy duty
nodes with short transmission distances, as the densealdlitie in the strip mode. This implies that
some kind of heavy-duty backbone may be desirable in optDatleployments.

In general, deployment of large planar sensor network isreftgchallenge and requires further study.
We hope that the strip and square deployments can shred bglhgeneral 2D deployments. Other potential
solutions include deploying multiple sink nodes, exphaitimobile sinks, and decreasing data dimension

(e.g., the maximum temperature instead of temperaturel oiodes).

VI. CONCLUSION

In this paper, we study the deployment issue for data badkftpin wireless sensor networks.
Determination of an optimal deployment scheme involvesation management, routing, and power
management. We formulate a general deployment optimizgiroblem in a linear network and obtain
numerical solutions. We then propose a greedy algorithrh pleaforms close to optimal compared to
the benchmark case. The closed-form analysis of the peafoce of the greedy algorithm revealed the
relationship among the design parameters, i.e., the redjlifietime, the number of data back-haul nodes,
and the length of a linear network to be covered. We expedt selationship holds in the case of optimal
deployments because the greedy scheme depicts closehteabperformance.

We study the effect of miscellaneous power consumptior@duding circuit power consumption and
receiving power consumption. We also study the cases ounifiorm data density and bursty data pattern.
The greedy algorithm can be easily adapted to both casessigitfificant better performance compared
to that of homogeneous and random deployment schemes. \&fenpitsvo heuristic extensions to planar
networks. Future study include planar networks, and theactgof realistic data aggregation models and

deployment errors.
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Fig. 8. Bursty data density profile.
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Fig. 14. Compare the number of nodes needed in the square-shalpgndent and strip deployment. The Xx-axisristrip, wherenim-p

is the total number of nodes.



