ACES: An Efficient Admission Control Scheme for QoS-Aware Web Servers!

Xiangping Chen, Huamin Chen, and Prasant Mohapatra

2063 Engineering II
Department of Computer Science
University of California
Davis, CA 95616
Email: {chenhua, prasant}@Qcs.ucdavis.edu

Abstract

The unpredictability of server response performance hinders the advance of new application
on the Internet. In this paper, we present an efficient admission control algorithm, ACES, based
on the server workload characteristics. The admission control algorithm ensures the bounded
response time from a web server by periodical allocation of system resources according to the
resource requirements of incoming tasks. By rejecting requests exceeding server capacity, the
response performance of the server is well maintained even under high system utilization. The
resource requirements of tasks are estimated based on their types. A double-queue structure
is implemented to reduce the effects caused by estimation inaccuracy, and to exploit the spare
capacity of the server, thus increasing the system throughput. The admission control algorithm
can be used for server overload control and for QoS provisioning of service differentiating Internet
servers. Response delays of accepted tasks are bounded by the desired predefined time period.
Theoretical analyses and experimental studies show that the ACES algorithm provides desirable
throughput and bounded response delay to the tasks, without any significant impact on the
aggregate throughput performance of the system under various workload situations.

Keywords: Admission Control, Bounded Response Time, Internet, ACES, QoS, Service
Differentiating Internet Servers

! This research was supported in part by the National Science Foundation through the grants CCR-09988179 and
ANI-0087548. A preliminary version of this paper was presented at the International World Wide Web Conference,
2001.

1 Introduction

The Internet and its services, especially the use of World Wide Web (WWW) in commercial ac-
tivities, well known as e-commerce, are increasing explosively [1]. A widely existing problem in
contemporary web servers, however, is the unpredictability of response time. Usually, one second
response time is desired from web sites, which is appropriate to the human response speed [2].
Long response delay frustrates user interest in interaction with web sites, thus devalues the ser-
vice quality. Although current web servers are able to serve thousands of requests per second, the
response delay of a popular server can be several seconds even minutes during high load periods,
causing the de facto “denial-of-service” effects. It was estimated that in 1998 about 10-25% of
e-commerce transactions were aborted owing to long response delay, which translated to about 1.9
billion dollars loss of revenue [3].

The unpredictability of the web response is mainly due to temporary server overload conditions.
The peak workload of a web server is usually several orders of magnitude higher than the average
load, and the average load usually experiences continuous growth, making it expensive and even
impossible to plan the server capacity to fulfill service requirements at all times. An overloaded
server does not have enough resources to serve all the incoming requests, and has to deny service
to some clients. Furthermore, it wastes resources in processing non-productive operations, such
as rejecting new connections or aborting partially completed ones, while failing to process tasks
to completion. Abdelzaher and Bhatti [4] reported that as much as half of the server’s processing
capacity is wasted on eventually rejected requests when the load is three times the server capacity.

Admission control (AC) has been used for overload protection. However, most contemporary
web servers use a rather naive AC scheme, namely tail-dropping AC, in which incoming requests
are dropped when the number of awaiting tasks exceeds a predefined threshold. The tail-dropping
AC scheme requires careful system capacity planning and works well only in steady workload
situations where the variance in task processing time is low. Thus, the number of tasks can be used
as a good indicator of the server load. However, the dynamics of web server workload weakens the
efficiency of the tail-dropping AC in overload protection. For example, the wide usage of Internet
server in e-commerce environment demands more and more dynamic and secure transactions, which
consume about 10 to 100 times processing power than ordinary tasks. More flexible AC schemes
are needed to adapt to the dynamics of traffic. These algorithm should be designed considering the
characteristics of task variety.

In this study, we propose a simple and effective AC algorithm, ACES (Admission Control based
on Estimation of Service time), to provide bounds on server response delay for incoming requests
under highly variant workload environments. Admission of a request is decided by comparing the
available computation power for a duration equivalent to the predetermined delay bound with the
estimated service time of the request. If the task is admitted based on this constraint, then it is very
likely that the request will be served within the specific time bounds. The service time estimation is
done on the basis of an empirical expression, which is derived from an experimental study on a real
web server. A double-queueing organization is used to compensate the inaccuracy in estimation, if
any, and exploit spare capacity of the system, while simplifying the task management. Simulation
experiments conducted using real workload indicate that the ACES algorithm provides response
delay bounds and can also help provide QoS in service differentiating Internet servers [5].

The rest of the paper is organized as below. Section 2 describes the basic processing procedure
of web server and analyzes the service time components. Section 3 presents the ACES algorithm
in detail and how bounded response time being ensured. Section 4 discusses how the algorithm
can be used in a service differentiating Internet server. Performance evaluation of the algorithm is
reported in Section 5. Related works are discussed in section 6. Section 7 concludes the study.

2 Background

In this section, we describe the basic processing steps performed by a web server and the service
time distribution in each step. As shown in Figure 1, a client sends a request to the server after
it successfully establishes a connection with the server. The server picks up the request from the
incoming request queue, reads and parses the requests, and invokes a request handler according to
the request type. The corresponding request handler generates the content for the response. The
server sends back the response header with content to the client, and logs the transaction after the
response transmission completes. The service time of retrieving a web object can be divided into
three parts: the almost fixed URL processing time, the content generation time which depend on
the object type, and the content transfer time, which is decided primarily by the response sizes.
As the number of active transactions in the server increases, the server may spend an increasing

portion of its time for synchronization and context switching.

Send Read Data
Header | Send Data

Transferring time

Accept Parse
Connect Request

Processing Time

Response
generation time

Figure 1: Web server processing steps.

Web servers uses multi-process, multi-threaded, or non-blocking I/O single process architecture
to serve requests concurrently. Each architecture has its advantages and disadvantages. In a
multi-process web server, each process has its own process memory space, thus available memory
for data decreases with the increase of process number. In a multi-threaded web server, multiple
threads share one single process space, thus some form of synchronization is needed to control access
to shared data. In a single process server, asynchronous disk and network operations should be
supported to provide a non-blocking I/O environment, which are still short of full implementation
in most of current operating systems. In this paper, we use the Apache [16] web server to analyze
server performance, mainly because of its freely available source code and large market share; around
50% of contemporary web servers are Apache servers. The Apache server uses the multi-process
architecture.

To collect the service time attributes, we set up an experiment environment consisting of one
Apache (version 1.3.12) web server and three WebStone (version 2.5) clients, connected through
a 10 Mb Ethernet. The web server hardware is based on a Pentium II 233MHZ CPU with 128
MB memory. The operating system used in the server is Linux 2.2.9. The clients are installed in
three Sun UltraSparc 10 with 128 MB memory, running Solaris 2.6. The three WebStone client
machines can generate up to 60 HTTP request processes simultaneously without being highly
loaded. During the tests, the web server experienced varying workload from a single HT'TP request
to 60 simultaneous requests. The total size of the files being requested exceeded that of the
server’s memory thus reducing the caching effects. The experiments were repeated under varying
file compositions and the results were found almost stable.

The server response time (SRT) or service time is defined as the busy CPU cycles consumed
between the time that the server accepts a client request, and the time that the server finishes
sending the response. The CPU cycles are used as time units to obtain the service time, since
the typical service time of a request is much less than one second. Even millisecond resolution is
not sufficient to provide an accurate picture of the service time distribution in different processing
procedures. The performance monitoring counters provided by the Intel P6 family processors are
used to record the elapsed busy CPU cycles of the current process.

Figure 2 depicts the mean service time of static objects versus requested file size under different
mazimum process number (MPN) in the server. It is well known that the MPN has direct influence
in service time distribution, which are discussed in detail in following paragraphs. CPU cycles have
been converted into seconds in the figure. The coefficient of variation (CoV) of service times vary
between 0.09 to 0.11.

102

Mean SRT(Seconds)

. . .
10° 10* 10° 10° 107
File Size(Bytes)

Figure 2: Mean service time of web objects.

It can be observed from the figure that the curves have two phases. If the files are smaller
than 64 Kbytes, the service times with the same MNP are almost constant. If the file sizes exceed
64 Kbytes, the mean service times increase linearly with the file sizes and the MNP value. We
call this phenomenon the 64 KB leap. The 6/ KB leap is mainly due to the underlying operating
system kernel. In Linux socket implementation, a 64KB send buffer limit is imposed for every
transmission. Any send request of more than 64KB is fragmented and the first 64KB is processed
while the remaining parts wait for the buffer space. The kernel can thus avoid crashing from

any imprudent code asking for more memory than what the kernel could provide. This limit is
tunable via ioctl() function. However, a large send buffer will not necessarily improve the overall
performance since smaller transmission may spend more time in the queue waiting for the larger
requests to be transmitted. Some other factors also contribute to the 64 KB leap. For example,
asynchronized disk I/O is widely used in current UNIX operating systems, and the default size
for read-ahead operation is 64 KB. At most 64 KB can be loaded from the hard disk in one I/O
operation.

The slopes of service time increase linearly with the number of maximum processes, because
the increase of process number caused higher probability of page faults, higher context switching,
and synchronization overhead. Based on the observation from Figure 2, the service time of a task
T'(s,n) can be estimated by the file size s KB and MPN value of n.

T(s,n) =a+ [s/64] x (b+ c*n), (1)

where a is the service time for small static web objects, i.e., requests for files smaller than 64
KB. b is the data transferring time factor, and c is the context switching overhead factor. Using
linear regression, we get the relative value for a,b, and cas: a:b:c=1:0.06:0.18.

Rechecking the file size distributions, we find that less than 1% of HTML and image files are
larger than 64 KB. Thus the service time of most HT'ML and image files are rather uniform. Service
times of dynamic objects, mainly CGI requests, depend on the computation complexity of the URL
processing instead of response size. Using the CGI scripts test set provided by WebStone 2.5 test
set, the average service time of a CGI request is around one order of magnitude higher than the
service times of static objects with a file size less than 64 KB. The experimental results indicate
that the object type is a good indicator of the requested CPU time, which can be derived from the
requested URL. Besides, classification of object types introduces less overhead than retrieving file
size information, which requires one fstat() system call in UNIX operating systems.

The emperical function was concluded from results achieved in a LAN environment where the
data were transmitted through high speed media. The TCP send buffer and the data tranferring
time factor (b in function 1) can be obtained from the operating system configuration and band-
width setting respectively. When extended to the Internet, which is characterized by heterogeneity
of end users with various link speeds, the TCP send buffer and the data transfer time can still
be obtained by recording TCP level parameters like congestion window size and round trip time
(RTT). The traffic variation may affect the accuracy of the service time estimation in the Internet
domain, which in turn affects the proposed admission control algorithm. To capture and nullify
the impact of these variations, a double-queue architecture is proposed (as discussed later) for the
missed requests.

3 The ACES Algorithm and Overload Control

Usually a queue of incoming requests is maintained in a web server awaiting to be processed.
Using the tail-dropping AC scheme, incoming requests are put in the queue until the queue is
full. Queue length is not always a good indicator of the system overload, especially when the
variance of processing time is high. Without effective admission control, the server response time

and throughput deteriorate drastically when the aggregate request rate exceeds the server capacity,
indiscriminately affecting all clients. Abdelzaher and Bhatti [6] reported that as much as half of
the web system’s processing capacity is wasted on eventually aborted/rejected requests when the
load is high.

To accommodate the high variance in service pattern of web servers, we propose a simple
and adaptive admission control algorithm, Admission Control based on Estimation of Service time
(ACES), to provide assurance of bounded response delay, while preserving the system throughput.
Service time of each task is estimated based on the request types. Inaccurate estimations are
dynamically adjusted and bounded delay is achieved by a double-queue architecture.

3.1 Delay Bound Assurance

In a stable system, i.e., if the server has the capacity to process all the requests in the steady state,
a queue and the associated queuing delay are introduced to smooth out the short term variations
in the job arrival rate. When the short term arrival rate is faster than the processing rate, newly
arrived requests have to wait in the queue for service. If variations of job arrival rate and processing
rate are high, more queueing buffer is needed, and therefore average queueing time and response
delay would be high. One way to increase the response time predictability of a system is to limit
the number of accepted requests in a given time period to no more than what the system can handle
in that period of time. Borowsky [7] et al. have provided a theoretical proof of short term response
time verses arrival rate in a FCFS work-conserving system.

The theorem is described as below: Let K (t) be the queue length at time ¢. Let Z,If:(%) Sy, be
the sum of the service time for requests in queue at time ¢. Sy is the residual service time of the
request in service. Let N(¢,t') be the number of requests arrive in the period (¢,t), Ziji(f’tl) S; be
the sum of service time required by requests N(t,t"). Therefore,

K(t) N(t—T,t)

Y Su<= Y Si<=T. (2)
n=0 =1

The response delay required by pending jobs is no more than T, if the sum of service time
required by arriving jobs at any duration T is bounded by time T. The response time (or delay) of
all requests can be bounded by T by restricting the workload arriving in every interval of length T.

Assume that the time is divided into discrete slots (0,7), (T,2T), ..., (kT,(k + 1)T), ...
For simplicity, we use the beginning point of each time period, kT, to represent the duration
(KT, (k4 1)T). Let c be the unit processing capacity of the system, C(kT") be the predicted system
processing capacity in period kT, S(i, kT) be the service time needed by the ith task at period kT,
and n(kT) be the number of admitted tasks in period kT'. If the server has a precise knowledge
of service time needed by each task, the admission decision can be made based on the following

expression.
n(kT)

C(kT)=c*xT > > S(i,kT). (3)

i=1
If expression 3 is true, then the request is admitted, otherwise it is rejected. The maximum
response delay of each task is bounded by the value of T if the service time of each task is known
prior to the admission decision phase. The discretization of time scale in the proposed AC algorithm

may deviate from the requirements of (2) for ceratin situations. To handle such situations, we have
proposed a double-queue architecture as discussed in Section 3.3. The results shown in Section 5
further justifies the approximation.

3.2 Service Time Estimation

While deciding to accept a request, the system should ensure that the sum of service time of accepted
tasks do not exceed the system capacity. In reality, it is not possible to know the service time
S(%,kT) in advance. High variance in resource requirement is a widely recognized characteristic of
web server workload. As indicated in the previous section, however, the service time and bandwidth
requirement of the same type of requests are more or less consistent. Service time of web objects
can be thus estimated based on the request type distribution of the server access pattern. We
approximate the service time of each task by using weighted computation quantum (CQ) matching
the CPU processing time of different type of tasks.

When a new request arrives, the system checks if there are enough CQ available to grant to
the request. Only requests that are granted enough CQ can be enqueued and served eventually.
The number of CQ issued to each task is determined by the resource requirement of the request.
Here we denote T;, as the number of types of requests to a web server, which can be derived from
the workload characterization of a web server. Let N;(kT') be the number of requests of type ¢ in
period kT, CQ; be the weighted CQ matching the CPU processing time for type ¢ tasks. Then
Equation (3) can be approximated as:

C(kT) > En: i * N;(kT). (4)
i=1

As in the case of Equation (3), a request is admitted if Equation (4) holds true, otherwise is
rejected.

3.3 The Double Queue Structure

Since Equation (4) is based on the estimation of service time, care needs to be taken to amortize
the accumulate delay influence of over-admission during a time period. Assume that a restricted
prioritized processing is enforced inside a queue, i.e., no lower priority tasks get served if there is a
higher priority task waiting, incoming requests are queued in the order from high priorities to low
priorities. Requests in the same priority are queued in FCFS order. When over-admission happens,
it is possible that low priority tasks stay in the queue for a long time awaiting services while high
priority tasks get dropped due to lack of queue space. On the other hand, under-admission wastes
system capacity. A double-queue structure is used to handle the over/under admission problems. A
primary queue is used as the incoming task queue, and a secondary queue is added for the backed
up requests (we call this as the backup queue). The system structure is shown in Figure 3.

An incoming request is first sent to the AC manager ACM. The ACM classifies the request
priority and decides if the request can be enqueued. Enqueued requests wait to be served in the
primary queue Qp. At the beginning of the next period, unfinished requests are sent to the backup
queue Qb. When the Qb becomes full, it is cleared up and queued tasks are dropped. Other
methods for expunging tasks from Qb can be explored. The task scheduler TS picks up requests

(Il ———

primary

drop

drop

Figure 3: Web server system structure.

in the queues and sends to the server pool. No request in the Qb can be picked up unless the Qp
is empty. Replies are sent back through the server network interface Nb. By using a double-queue
structure, newly accepted requests need not wait for a long time for service, thus bounded delay is
achieved for most of the requests.

4 Service Differentiation

The ACES algorithm can be extended to provide prioritized services in a service differentiating In-
ternet server (SDIS). The basic ideas of SDIS include classification of client requests into groups with
different service requirements, resource allocations based on the task groups, prioritized scheduling
and task assignments schemes. A detailed study on the concept and performance evaluation of
SDIS is reported in [8].

In a prioritized system, the periodic system capacity seen by different priority groups changes
with the prediction of resource requirements of each priority group. By adjusting the assigned
system capacity to each priority group, the ACES algorithm provides service quality assurance
to prioritized tasks. There are two kinds of service disciplines that can be provided by the ACES
algorithm: prioritized resource allocation (PRA) and weighted fair allocation (WFA). PRA is imple-
mented by assigning resources equal to the whole system capacity to the highest priority tasks (or
premium tasks). Lower priority tasks get the remaining resources. The WFA is realized by setting
shares of system resources in each priority group, where each priority group gets at most/least their
shares. In this study we only discuss the PRA control scheme. The WFA scheme can be easily
extended from the PRA scheme by setting a minimum or maximum resource ratio for each priority
group.

The objective of the server is to ensure QoS to high priority tasks whenever their arrival rate is
lower than the system capacity. Thus, for high priority tasks, the available resources are equal to
the system period capacity. For lower priority tasks, the available resources are the system capacity
minus the predicted resource requirements of higher priority requests during a time period. Since

the priority ratio and type distribution of incoming tasks vary over time, dynamic assignment of
system capacity is needed to preserve the system throughput.

Assume all the requests are classified and are assigned a priority p, (p = 1, .., P), wherein P
denotes the highest priority. Let)\f TediCted, (¢ =1,.., P) be the predicted inter-arrival rates of tasks
for each priority group. The system capacity available to priority group p at time kT < ¢t < (k+1)T,
denoted as Cp(kT,t), is:

P
Cp(kT,t) = CKT)— > Nredeed(kr)«T —
i=p+1
Ap(KT) * t. (5)

A task with priority p is admitted if the service time is equal or less than available capacity
Cp (KT, t).

4.1 Estimation of Request Rate

The resources allocated to each priority group is based on the prediction of the request rate of
incoming prioritized tasks. Apparent seasonal workload patterns corresponding to daily cycles
discussed in the previous section can be used to predict current traffic intensity based on the
workload history. On the other hand, reports in [9, 10] suggested that the aggregate web traffic
tends to smooth out as Poisson traffic in short observation time windows. This suggestion was
further proved by Morris and Lin in [11]. Based on the above published results, we decide to use
Markov-Modulated Poisson Process (MMPP) described in [12] to capture the seasonal behavior
of the aggregate workload of web servers, while preserving the tractability of modulated Poisson
process. The request arrival process is described as a Markov process M (i) with state space
1,2,...,%,...,N. State ¢ has arrivals complying with Poisson process at rate \;. To follow the
seasonal behavior, especially the day/night cyclic behavior of the web server load, the observed
traffic data is chopped into subsets for each hour on a daily basis. The Markov transition matrix
Q(n) = [Qi;(n)], (n =1, ...,24) for each hour can be easily calculated by quantizing the inter-arrival
rate in each observation period, and calculating the frequency at which M (n) is switched from state
i to state j. The predicted access rate A\Pre%td(LT) can be expressed by the following equation:

predicted(kT) = [M(k — 1)T)]. * Q(kT), (6)

where [A((k — 1)T')] is the state vector of measured inter-arrival rate in the previous period.
Q(kT) can be further adjusted by comparing the differences between predicted data and measured
data, to catch up with the long term trends of a web server load. In the experiment, we use three
state (Dinc, Psames Pdec) transition matrices to capture the traffic trends in each observation period.
Pinc is the probability of increment request rate, psame the probability of the same request rate,
and pge. the probability of decrement request rate. The ¢ value for increment and decrement is
10% of measured value. The experiment shows that there is not much difference in the capability
of capturing the traffic trends in each observation period between a three state transition matrix
and more complicated state transition matrices.

4.2 Delay Bounds of Prioritized tasks

One way to increase the response time predictability of a system is to limit the number of requests
in a given “short time” period T to no more than what the system can handle in that period of
time. Borowsky et al. [7] provided a theoretical proof that the service time required by pending
jobs is no more than T in a FCFS work-conserving system, if the sum of service time required by
the arriving jobs at any duration 7 is bounded by time 7. Thus the response time (or delay) of
all requests can be bounded by 7' by restricting the workload arriving in every interval of length T'
time.

In a prioritized environment where each request is assigned a specific priority, the processing
order and resource allocation are based on the priority of each request. The FCFS processing
assumption in the above theorem is no longer valid. In [5], we proved that the mean response time
of a request is bounded by the arrival rate with equal or higher priority and the service rate of the
system, if requests with different priorities have the same service requirement distribution and a
strict priority scheduling is used.

Let p(1 < p < P) denote the priority of the requests and P be the total number of priorities.
Let s,(¢) be the service time requirement of task i belonging to priority p, and N, (¢t — T',t) be the
number of requests of priority p arriving during the period T'.

Lemma : In a prioritized preemptive work-conserving environment with no pending work, if
N(t—T,t) requests arrive belonging to a single priority level p, then their response time is bounded
by Tp(T, < T) if SN g (i) < T, (proved in [7)).

Theorem : If the priority levels are in the increasing order of p, the response time of a task
with priority p is bounded by Efzp Ty If 25:1 T, < T, the response time of any task is bounded
by T'.

Proof : Let R, ;(n) be the response time of the ith task in the priority class p during period
n, and busy_time(n) be the amount of time in (n) that the system is busy during period n. Let
the request time series be partitioned into periods of n with length T'.

For n = 1,i.e.,t = (0,T), without loss of generality, let all requests arriving during (0, T) be
re-shuffled to be served in the decreasing order of p (for p =1, .., P), then Rp;(1) <= Tp, fori =
1,..,Np(1), and Rp;(1) <=0 1 T+ T, <= X0, Ty, forp=1,.., P.

Assume the above expressions hold true in the period k — 1, re-shuffle the requests in queue in
the decreasing order of p during period k. Let Qp(k) be the sum of the service times for the pth
priority tasks, then

P Ng(k—1)
Qpk) = Qpk—1)+ Z Z sq(1) — busy_time(k). (7)
g=p i=1
Clearly, Qp(k — 1) <= busy_time(k). By assumption, Zfzp Efi’l(k_l) sq(7) <= Zf;:p Ty, so
P Ng(k—1) P
Qp(k) <= Z Z sq(i) <= ZTq- (8)
a=p =1 q=p

Hence, by induction and from Equation (8), we get R, ;(k) <= Zfzp Tq(i = 1,..., Np(k), for
p=1,..,P andk = 1,2,..., i.e., the response delay boundary of each prioritized task can be

achieved by controlling the requested service time in each period of length T'. As long as the sum
of service times requested by high priority tasks does not exceed T, the system response time can
be assured by restricting the number of admitted low priority tasks.

The granularity of T" affects the system performance. Increasing the value of T" smoothes out the
access variance between adjacent periods and allows more requests to be admitted. However, larger
value of T also increases the variance of response time and degrades the system responsiveness. Both
user perceivable delay and system throughput should be considered in determining an appropriate
value of T'.

4.3 Waiting Time Estimation

The service time of a web object can be estimated from statistics of the same or similar type of web
objects with acceptable variance. The number of requests allowed by the system can be derived
from the expected waiting time and the job arrival rate. Let W,(t) denote the expected waiting
time of tasks with priority p at time ¢, Ap(t) be the expected arrival rate of tasks with priority p
at time ¢. Let W(¢t) denote the expected waiting time of a task in the system at time ¢, A(t) be
the expected arrival rate of tasks of the system at time ¢. In the period k, the expected number of
tasks in the system equals:

P

N(k) =W (k) * A(k) =D Ap(k)Wp(k).- 9)
p=1

According to Little’s Law [13], the waiting times of each priority group equals:

N(k) = 32,0 Ai(k)Wik)
Ap(k)

Wy(k) = (10)
On the other hand, the waiting time of a task in the pth priority group equals the residual life of
the executing task Wy plus the sum of service times of equal or higher priority tasks in the queue,
and the sum of service times of higher priority tasks arriving while it waits in the queue. The mean
service time of group ¢ in period k is represented as S;(k). The waiting time is thus equal to :

P P
Wp(k) = Wo+ > Ni(k)+ > Wy(k)Ai(k)Si(k). (11)

i=p i=p+1

Let p;(k) = A;(k)Si(k). By combining results of Equations (10) and (11) we can get,

Wp(k) = P Wo P
A= pk)A = > pilk)
i=p i=p+1
< S — . (12)
(1= pi(k)) L~ D pilk))
i=p i=p+1

¢ is the unit processing capacity of the system, its inverse value is the worst case expected
residual life of an executing task, which happens when the utilization factor approaches to 1.

10

Equation (12) shows the mean waiting time of prioritized tasks by using the estimation of the
inter-arrival rate of equal or higher priority tasks.

Similarly, we can get the expected task inter-arrival rate and acceptable number of tasks in each
period based on the expected waiting time. The result is shown as:

P
Wo = Wp(k)(1= 3 pilk))?
Ny(k) = Ap(k) T = =ptl T. (13)

P
1= Wok)Splk) S pilk)
i=p+1

Note that the above analysis are based on the periodic data collection assumption. In fact, all
the data used in the above equations can be easily obtained from a few counters which are reset
periodically. The workload of each priority level is estimated at the end of each period. Expected
number of tasks is determined based on the expected inter-arrival rate. During one period, if the
number of incoming tasks of one priority level exceeds the expected number, then there is no need
to accept new requests in the same priority level until the beginning of next period.

5 Performance Evaluation

To test the effectiveness of the ACES algorithm, we developed an event driven simulator for the
web server and used real traces of web requests as the input. The reference locality, response size,
and object type distribution extracted from the logs of the Computer Science departmental web
server at Michigan State University? were used for the workload generation. The web request traces
for a one-week period was used, which has about a million access logs. The system configuration
was set based on the average configuration of current popular web servers as shown in the Table 1.

Table 1: Simulation Configuration.

| Parameter | value |
Priority Level 2
Scheduling period 1 second
System Capacity for Static Objects 1000 req. /sec
Network Bandwidth 50 Mbps
Disk Bandwidth 10 Mbps
Caching hit ratio 0.7
Dynamic Objects Processing Overhead | 10 ms
Maximum open connection 1000
Total queue length 1000
Response delay bounds 1 second

Three performance metrics are used in the simulation: server throughput, mean response time,
and response delay bound miss rate of each priority group. System throughput indicates the server
capability. Mean response time and delay bound miss rate quantify the service qualities in each

2This work was done while the authors were at Michigan State University.

11

priority group. The delay bound miss rate indicates the proportion of tasks whose response time
exceed the bounded delay.

Three kinds of admission control algorithms are implemented to examine the effectiveness of
ACES algorithm in terms of providing bounded delay and high system throughput. The first
admission control algorithm, we call it simple admission control (SAC) algorithm, is analogous to
the leaky bucket [14] algorithm used in traffic engineering in the Network transmissions. Using the
SAC scheme, each admitted request is allocate one CQ irrespective of the request type, thus there
is no estimation of service time. The SAC scheme performs better than the tail-dropping scheme,
since it smoothes out the web server traffic and provides preliminary overload protection.

Another admission control algorithm used for comparison purpose is the conservative admission
control (CAC) scheme. The CAC scheme is a hypothetical scheme, in which the server is assumed
to have precise knowledge of service time a request needs. Using the CAC scheme, the allocated
CQs are allocated barely enough to fulfill the service time requirements. Although implementation
of the CAC is unrealistic, we use it to compare the performance of ACES scheme. Conservative
AC scheme tends to under-allocate system resources. In the experiments, the admission criteria
was relaxed to allow admission if the CPU is idle, no matter whether there are CQ left or not.

Based on the data collected, web objects are classified into 4 types: static, dynamic, audio and
video objects. The CQs consumed by each object type in the ACES scheme are listed in the Table
2. The CQs allocated to each object type is based on the results in Section 2.

Table 2: CQs allocated to each object types.
Object Types | Static | Dynamic | Audio | Video
CQs 1 10 20 100
Request Freq. | 94.7 5 0.2 0.1

5.1 Overload Management Performance

Two kinds of workloads are used in the experiment. The first is the stress test workload, in which
traffic intensity increases continuously till 2.5 times of the system capacity. We try to explore the
capability of the three algorithms in preserving the system throughput under extremely high load by
stress test. The second kind of workload is aimed to examine the sensitivity of the three algorithms
under fluctuating workload. There are two modes in the workload series used in the sensitivity
test; One is sustained lightload or overload, and the other is occasional lightload or overload. The
maximum workload is 2 times of the system capacity. The occasional overload duration is 2 time
units, and the sustained overload duration is 10 time units. Each time unit is 100 times of the
observation period, i.e., 100 seconds. During sensitivity test, the result of the first 10 time units
are recorded to indicated the server response behavior with respect to load fluctuations.

5.1.1 Throughput Comparison

Figures 4 and 5 plots the throughput performance of the three admission control algorithms under
the two tests.

It can be observed that the throughput of the system increases linearly with the workload
during low load periods (lower than 0.6 of system capacity) irrespective of the admission control

12

T T T T T T T T T T
[I ' - SAC

[; \ ACES
18F i , \ — cAC |
— - load

o
i
N

T

Normalized throughput
e

Normalized throughput

o

I 1 I
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Normalized load Normalized load

Figure 4: Throughput of stress test. Figure 5: Throughput of sensitivity test.

scheme. With the increase in load, the throughput of the CAC scheme is a little bit lower than the
other two schemes. The reason is that the CAC scheme tends to waste system resources when the
inter-arrival rate of requests is temporarily lower than the system capacity. With the increase of
system load to extremely high, the throughput of CAC improved a little bit due to lower chance
of wasting system resources. When the system load is around the system capacity, the throughput
performance the ACES scheme is a little bit lower than the SAC scheme, because the SAC scheme
tends to over-allocate system resources. Under even higher load situation, the ACES scheme has
similar performance as the SAC scheme.

Figure 5 plots the throughput performance of the three AC schemes under varied workload
situations. Although the throughput performance of the three schemes is quite consistent with the
stress test showed in Figure 4, the ACES scheme tends to be more stable than the SAC scheme.

5.1.2 Average Delay

Figures 6 and 7 depicts the average delay performance of the three admission control algorithms
under the stress test and sensitivity test. During low load periods, the delay performance of the
three AC scheme is about the same. The average delay is slightly higher in using the SAC scheme
than the other two schemes during medium load periods. However, the average delay of the SAC
scheme is one order of magnitude higher than the other two schemes during overload periods. The
mean response delay of the ACES scheme is about one fifth of the delay bounds during overload
periods, while delay of the CAC scheme is about one tenth of the delay bounds during overload
situations. Since nearly all the tasks need to wait from the tail of queue for service under high
load situations, the average delay of the SAC scheme under high load periods is determined by
the system total queue length. The experiment proves that the system responsiveness of ACES is
close to the ideal case. Based on the queue length and waiting time relationship per Little’s Law,
the average delay differences between the three AC schemes suggest that the required queue length
might be much shorter for ACES compared to that of SAC.

13

2500

T
- SAC
ACES
—— CAC
load

1400~

12001 2000

i :
10001 : R 7\
1500

Average delay
®
3
3
Average delay

1000 -

@
3
]

400 ! R , b
k i \
500 ! \ / L

200+

L L L L
12 14 16 18 20 22 24
Normalized load

L L L L L L L - L
10 12 14 16 18 20 22 24 2 4 6 8 10
Normalized load

" = L
2 4 6 8

Figure 6: Delay of stress test. Figure 7: Delay of sensitivity test.

5.1.3 Delay Bound Miss Probability

Figures 8 and 9 depicts the delay bounds miss ratio of the three admission control algorithms under
two tests. As expected, delay bounds miss rate (Dbm rate) for CAC is zero, since the system stops
admitting tasks when it cannot serve them within the delay bounds. Using the SAC scheme, on the
contrary, the system fails to meet the delay bounds for nearly all the tasks in high load periods. The
reason is that the SAC scheme fails to catch up with the changes of system resource consumption
and tends to over-admit tasks. The over admission leads to the formation of long queue, thus
introducing long waiting time for all admitted tasks. However, under low or medium load situation
(about less than 0.7 of the system capacity), the SAC scheme performs as well as the other two
schemes. The performance of ACES is good under reasonably high load (less than 2.0 of the system
capacity), and nearly no delay bounds miss is incurred at this load. Under extremely high load
situation, the ACES scheme has lower than 1% of delay bound miss ratio.

~ SAC
ACES

10° b SR 10° | 1o e e
load

H
S,
T
N
S,
T

~- SAC
ACES
—+ CAC

Delay bounds miss rate
Delay bounds miss rate

H

S,
.
S,

10°

10°

4 L
5 10

L
15

L
20

—
10

'
15

20

Normalized load

Figure 8: Dbm rate of stress test.

Normalized load

Figure 9: Dbm rate of sensitivity test.

The two tests prove that the ACES algorithm is effective in providing delay assurance as well as
in preserving system throughput under diverse load and overload situation in a web server system.

14

Its throughput performance is closer to the SAC scheme, and the response delay performance is
closer to the CAC scheme.

The CAC scheme is powerful in controlling the deadline misses of tasks, as it does not incurs
any bound miss. However, the throughput of CAC is much lower than the other two schemes. The
low throughput is partly due to the strict admission control. The server does not make full use of
computing resources when the variance of request rate is high. The CAC scheme is suited for the
hard real-time services where deadline guarantee is critical.

The SAC scheme is suitable for a system with uniform workload, as it does not work well in
highly diverse workload environments such as a web server. The SAC scheme performs well during
low or medium load periods. During high or overload periods, the SAC scheme tends to over
allocate system resources, which causes long response delay. Accumulative effect of overload has
long term influence in degradation of system responsiveness and throughput.

5.2 The ACES algorithm in SDIS

The following experiments evaluate the performance of the ACES algorithm as opposed to a simple
admission control (SAC) algorithm in a prioritized web server. High priorities are assigned to 50%
of the incoming requests randomly, and the remaining requests are marked as low priority. Thus
the ratio of high priority to low priority tasks is 1 to 1, and both types of tasks are randomly
distributed in the whole arrival sequence.

5.2.1 Throughput Performance

Figures 10 and 11 plot the throughout of stress test of two priority groups. Normalized load in
the x-axis is the ratio of real load to the system capacity, and the normalized throughput is ratio
of the throughput to the system capacity. In the stress test, the aggregate request rate increases
continuously till 2.5 times of the system capacity. The objective of this experiment is to explore
the capability of the algorithm in preserving the system throughput and delay performance under
extremely high load by the stress test.

Figure 10 shows the throughput variation using the SAC algorithm. It can be observed that
the throughput of each priority group is proportional to the traffic percentage of each group. High
priority tasks suffer from the same low throughput as low priority tasks when the aggregate workload
is high. Predefined QoS profile strictly prioritized admission and scheduling, are not ensured.

Figure 11 shows the throughput of each priority group when the ACES scheme is deployed.
The system stops serving low priority tasks when the high priority load approaches about 80% of
system capacity. On the other hand, the throughput of high priority tasks equals the request rate
of high priority group until the system utilization reaches 0.8, which is the highest throughput of
the system using the traces as input workload. The throughput of high priority tasks remain at
the 80% level when the high priority tasks overload the system. It can also be observed that the
aggregate throughput of the two AC schemes remains at the same level. It suggested that the
prediction and reservation behaviors of the ACES scheme do not degrade the system aggregate
throughput.

15

SAC, Priority Ratio 1:1 ACES, Priority Ratio 1:1
T T T T

12
—x— Low prio throughput —x~— Low prio throughput
—&- High prio throughput —S— High prio throughput
1ir High prio Load High prio Load
1r 1 1r 7
09r 1 —6—o_ N
—o—o——6_
08l] 08k 4
5 =
£ £
Sorr 1 3
= £
E 06k i § 061 q
K T
£ £
5 05F i £
z z
N-S é/&'lﬁ\ . 041 7
041 S ﬁ\&e - R
RN~ 57 & X
031 il
Y. 021 q
02r- , % q
y
01r q 2
\
| I I I I I I I I I I 0 I I I I "
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11 0 0.2 0.4 0.6 0.8 1 12
Normalized load for high priority tasks Normalized load for high priority tasks
Figure 10: Throughput using SAC. Figure 11: Throughput using ACES.

5.2.2 Delay Performance

The average delay of each priority group is also well controlled under the ACES scheme. As shown
in Figures 12 and 13, the average delay of each priority group is much lower than the predefined
delay bounds of 1 second by using the ACES algorithm.

Priority Ratio 1:1, Low prio task performance Priority Ratio 1:1, High prio task performance
T

10 T T T T T T 10 T T T
—O—- SAC throughput
—&— SAC delay
NN - 3 —»~ ACES throughput
o660 T e FTo o o0 < ACES delay
. Z delay bounds
10" ¢ | 10" ¢ E|
/ S S
L0 —5~ SAC throughput 4 Lk A - B
k) -5~ SAC delay 2 o
8 —x~ ACES throughput 8
= — ACES delay = A\
2 delay bounds 2
£ £ x
2o S S
310 4 310 ¢ Ja/g/é\g\ i
S S “o—6)
?/9/8* p SO 0w o o6
5 S o]
o o
10 ¢ E| 10 ¢ L X % R X— % —X— X — %
XX T
% —x -0 — - - o -
8 -6~ Q=g O-©0-090-0 0 5.0 -0-0-C0-0 0o o @=85 0-00-0-00 © -0 ©0-6 O o 4
L=l N 2
- P - X &
> @
- - - -1 -
107 & * = E) E
I I I I I I Il I I 1 I I I I I I I I I I I I
0.1 0.2 03 04 05 0.6 0.7 0.8 09 1 11 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 11
Normalized load for high priority tasks Normalized load for high priority tasks

Figure 12: Performance comparison of low Figure 13: Performance comparison of high
priority tasks. priority tasks.

Figure 12 plots the low priority task delay and throughput performance of the two AC algo-
rithms. Using the SAC algorithm, low priority task throughput is proportional to the ratio of
low priority traffic. However, extremely long delays are introduced when prioritized processing is
used. On the contrary, the ACES algorithm blocks admission of low priority tasks during high load
periods in exchange of low delay bounds miss ratio. The prediction and CQ assignment behavior
of the ACES scheme avoids unnecessary waiting of low priority tasks, thus decrease the system
overload during high load periods.

Figure 13 plots the high priority task delay and throughput performance of the two AC algo-
rithms. Using the SAC algorithm, high priority task throughput is proportional to the ratio of high

16

priority traffic to the total traffic volume, although the high priority task traffic is low. Delays of
high priority tasks are kept low because prioritized processing is used. On the contrary, the ACES
algorithm preserves throughput performance of high priority tasks during high load periods with
the cost of higher average response delay, but still within the delay bounds.

As we can see from the workload analysis, the traffic intensity varies with time periods. It is
reasonable to believe that traffic intensity of each priority group also varies with time in service
differentiating environments. Request rate estimation helps to preserve system resources for high
priority tasks and reduce wastage of system resources. We test the performance of the ACES
algorithm under fluctuating load situation.

5.2.3 Sensitivity Test

Figures 14 and 15 plot throughput and delay performance under fluctuating workload. The experi-
ment is aimed at examining the sensitivity of the ACES algorithm to the variation in the workload.
The test set can be phased as sustained lightload or overload, and occasional lightload or overload.
The occasional overload duration is 2 time units, and the sustained overload duration is 10 time
units. Each time unit is 1000 times of the observation period.

PACERS, Priority Ratio 1:1
12 T T

Delay performance, Priority Ratio 1:1

5~ Low prio throughput | | 1000 . i :
—*— :lgn prio tLhrO(l;ghpUt &~ Low prio delay
igh prio Loa —#— High prio delay

900 -

4

®

T
~ ®
5]]
S}]

@
3
]

o
@
T

load curve

Normalized throughput
|
*
Average response delay
@
3
3

o
IS
T
IS
S
]

300

0.2

.
2 4 6 8 10 12 14 16 18 20 22 24
Time series 0

Time series

Figure 14: Throughput under fluctuating

Figure 15: Delay under fluctuating load.
load.

The maximum resource requirements of high priority requests equal the system capacity. It can
be observed from Figure 14 that the ACES scheme is very sensitive to the load fluctuation, which
blocks the low priority tasks under high load situation to preserve the throughput of high priority
tasks, and resume service of low priority tasks during medium to low load situation. Figure 15
shows the delay performance of the two priority groups. The delay of high priority tasks follow the
trends of incoming high priority workload, but the maximum value is only about one fifth of the
delay bounds. The delay of low priority tasks is also well controlled under the delay bound.

6 Related Works

Several studies on QoS support in web servers have addressed the technology of prioritized task
processing and admission control issues. Bhatti and Friedrich [15] addressed the importance of

17

server QoS mechanisms to support tiered service levels and overload management. A Web-QoS
architecture prototype was developed by adding connection manager module to the Apache [16]
Web server. Admission control is implemented by blocking low priority tasks when the high priority
waiting task number exceeds the threshold. Eggert and Heidemann [17] evaluated application level
mechanisms to provide two different levels of web services. The admission control is implemented
by limiting process pool size and response transmission rate to different priority groups. Pandey
et. al. [18] described a distributed HTTP server which enables QoS by prioritizing pages on a web
site. The admission control is realized by assigning communication channel to prioritized pages.
All of the admission control mechanisms mentioned above are based on a predefined “threshold”.
Performance of high priority tasks is guaranteed by emulation of a fixed bandwidth “leased line”.
However, it is expensive to satisfy the requirements of burst workload by “leased line” scheme,
since peak loads are several orders of magnitude higher than average load.

7 Conclusion

The growth of the Internet and WWW applications have imposed continuous challenge to the
Internet server performance and quality of service assurance in terms of predictable delay and
throughput. However, the prevalent “bursty” nature of the server access patterns makes it difficult
and expensive to maintain fast response at all times even by a high performance server. The peak
workload of an Internet server may exceeds the average workload by orders of magnitudes. In this
study, we present a simple and effective admission control algorithm, ACES, to adapt to the highly
variant processing times of web server environments. Tasks are admitted based on the estimation
service time. A double-queue structure is deployed to compromise the inaccuracy of service time
estimation, prevent accumulation of response delay, and improve the system throughput. A de-
tained experimental measurement of service time distribution of web objects is conducted to provide
foundations of service time estimation. Simulation results demonstrate that the ACES algorithm
is able to provide assurance of response time while maintain its throughput under various workload
situations.

When a server is unable to provide satisfactory service to all requests, selective resource alloca-
tion is a promising technique to assure service to requests which are more important to clients or
servers. The ACES algorithm can be extended to adapt to the highly variant access patterns and
processing of web server environments to ensure the service differentiation quality. Tasks are ad-
mitted based on the estimation of periodical behavior of prioritized task groups and service times.
The performance of high priority tasks are preserved by blocking the traffic of low priority tasks
when the system load is high. Delay of most tasks are bounded by the algorithm processing period.
Theoretical proof and simulation results demonstrate that the ACES algorithm is able to provide
assurance of response time and throughput performance for each priority group under various work-
load situations. Its aggregate throughput performance is similar to the SAC algorithm, while the
peak high priority task throughput is much higher than the SAC algorithm. The average delay is
about 10 times lower than predefined boundary, and the delay bounds miss ratio is 0 during most
of time periods. Compared to “threshold” based admission control such as tail-dropping, the ACES
algorithm adjusts to the “burst” of workload dynamically and sensitively, increasing throughput
during low load periods and ensure QoS during high load periods.

18

References

1]

[12]

[13]

[14]

[15]

E. J. W. West, “Using the internet for business - web oriented routes to market and existing it
infrastructures,” Computer Networks and ISDN Systems, vol. 29, pp. 1769 — 1776, July 1997.

Usability Engineering. Academic Press, 1993.

T. Wilson, “E-biz bucks lost under ssl strain,” Internet Week Online, May 20 1999.
http://www.internetwk.com/lead/lead052099.htm.

T. F. Abdelzaher and N. Bhatti, “Web server qos management by adaptive content delivery,”
in In Proceedings of the International Workshop on Quality of Service, (London, England),
June 1999. http://www.eecs.umich.edu/ zaher/iwqos99.ps.

X. Chen and P. Mohapatra, “Providing differentiated service from an internet server,” in pro-
ceedings of IEEE Internet Conference on Computer Communications and Networks, (Boston,
MA), October 1999. http://www.cse.msu.edu/rgroups/isal/pubs/conf/ic3n99.ps.gz.

T. F. Abdelzaher and N. Bhatti, “Web server qos management by adaptive content delivery,”
in IEEE Infocom, 2000. http://www.ieee-infocom.org/2000/papers.

E. Borowsky, R. Golding, P. Jacobson, A. Merchant, L. Schreier, M. Spasojevic, and J. Wilkes,
“Capacity planning with phased workloads,” in Proc. WOSP’98, (Santa Fe, NM), ACM, Oc-
tober 1998. http://www.hpl.hp.com/research/itc/csl/ssp/papers/index.html.

X. Chen and P. Mohapatra, “Service differentiating internet servers.” To appear in the IEEE
Transactions on Computers.

A. K. Iyengar, M. S. Squillante, and L. Zhang, “Analysis and characterization of large-scale
web server access patterns and performance,” World Wide Web, pp. 85-100, 1999.

J. C. Mogul, “Network behavior of a busy web server and its clients,” Tech. Rep. Technical
Report WRL 95/5, DEC Western Research Laboratory, Palo Alto, CA, October 1995.

R. Morris and D. Lin, “Variance of aggregated web traffic,” in IEEE Infocom, 2000.
http://www.ieee-infocom.org/2000/papers.

V. S. Frost and B. Melamed, “Traffic modeling for telecommunications networks,” IEEE Com-
munications Magazine, vol. 32, pp. 70-81, March 1994.

L. Kleinrock, Queueing Systems. John Wiley & Sons, 1976.

K. Sohraby and M. Sidi, “On the performance of bursty and correlated sources subject to
leaky bucket rate-based access control schemes,” in Proceedings of the Conference on Computer
Communications (IEEE Infocom), (Bal Harbour, Florida), pp. 426-434, April 1991.

N. Bhatti and R. Friedrich, “Web server support for tiered services,” IEEE Network, pp. 64—71,
September/October 1999.

19

[16] “Apache server project.”
http://www.apache.org.

[17) L. Eggert and J. Heidemann, “Application-level differentiated services for web
servers,” In World Wide Web Journal, vol. 3, mno. 2, pp. 133-142, 1999.
http://www.isi.edu/ larse/papers/index.html.

[18] R. Pandey, J. F. Barnes, and R. Olsson, “Supporting Quality Of Service in HTTP Servers,”
in Proceedings of the Seventeenth Annual SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, (Puerto Vallarta, Mexico), pp. 247-256, ACM, June 1998.

20

