














�+�L�J�K
�&�R�U�U��

�+�H�W�H�U�R��
�%�D�Q�G�Z�L�G�W�K

�/�R�D�G
�%�D�O�D�Q�F�H

�&�O�L�H�Q�W
�0�R�E�L�O�L�W�\

��
������
������
������
������
������
������
������
������

�7
�K

�U
�R

�X
�J

�K
�S

�X
�W

���
��0

�E
�S

�V
��

�0�$�3�6
�'�H�Q�V�H�$�3

(a) Aggregated UDP throughput for
MAPS and DenseAP.

(b) Clients’ rate distribution in
MU-MIMO.

(c) Dominant multipaths for
mobile C3 and static C4, at AP2.

(d) MAPS vs. DenseAP over VoIP.

Figure 8: MAPS and DenseAP performance in representative settings. MAPS performs similar to Oracle.
busy time. It seeks to balance the load by assigning clients to less
loaded APs5. We also compare MAPS with an “Oracle", which is
the best-throughput (optimal) client assignment. Oracle �nds the
best setting through exhaustive search. Our experimental setup
consists of the 802.11ac APs and phones described in Section 3.1.
We evaluate multiple topologies, under various tra�c scenarios
(UDP, TCP, VoIP).

6.1 Performance in Representative Settings
We �rst evaluateMAPS’ performance in four representative settings,
which capture di�erent aspects of dynamics in 802.11ac networks.
We consider that APs generate saturated downlink UDP tra�c to
clients, and that they operate on orthogonal channels, unless it is
explicitely mentioned.
Correlated channels:We �rst evaluate MAPS in our case study
setting of Figure 3. Similar to Oracle, MAPS can identify the best-
throughput client assignment, and achieves 153 Mbps (or 27.5%)
aggregated throughput gain compared to DenseAP, as shown in
Figure 8a. Speci�cally, MAPS can identify the high correlation of C3,
C4’s wireless channels at AP2, by computing their CSI correlation
and SINR values. The correlation factor ! (C3,C4) is 41% and 50%
higher compared to ! (C1,C3) and ! (C2,C3), as shown in Table 3.
Such high correlation does not allow for MU-MIMO operation at
AP2. Hence, MAPS will assign C3 to AP1.

DenseAPwill falsely assign C3 to the highest RSSI AP2. Although
the SU-MIMO is the best mode for such assignment (cf. Tab. 1), we
observed that the AP’s MU-MIMO client grouping algorithm will
periodically try to evaluate the performance of the group {C3,C4}.
However, this will result in high inter-client interference and high
PER (cf. Fig. 2b). When C3, C4 are grouped together, AP’s PHY rate
adaptation switches to low PHY rates to copewith such interference.
This is shown in the rate distribution Figure 8b, where the AP2
often uses the lowest available 802.11ac rate (29.3 Mbps) to transmit
to C3. However, when MAPS assigns C3 to the lower RSSI AP1,
the selected PHY rate is mostly 390 Mbps, which results in higher
throughputs.

Table 3: CSI correlation for case study setting.
Setting C1-C2 C1-C3 C2-C3 C3-C4

CSI Corr 0.42 0.51 0.48 0.72

Heterogeneous bandwidths:We next evaluate MAPS with het-
erogeneous bandwidth clients. We deploy two APs and �ve clients.
C1 and C2 are connected to AP1 operating at 80 MHz. C4 and C5
are connected to AP2. Due to interferences, C4 and C5 operate at
40 MHz. A new client C3 has a stronger RSSI with AP2, than AP1.
Hence, DenseAP will assign C3 to AP2 without considering that, C3
cannot form an 80 MHz MU-MIMO group at AP2. C3’s throughput
is 79 Mbps at AP2, while the total network throughput is 608 Mbps
5DenseAP performs transmit power control, which is out of the scope of this work.

(cf. Fig. 8a). However, MAPS can identify the opportunity of a high
throughput MU-MIMO group {C1, C2, C3} at 80 MHz, and assigns
C3 to AP1. Associating with AP1, C3 achieves 156 Mbps throughput,
with a total network throughput of 720 Mbps. Leveraging client’s
bandwidth pro�le, MAPS can almost double C3’s throughput. It also
boosts total network throughput by 112 Mbps (18.4%) compared to
DenseAP. MAPS performs the same as Oracle.
Mobility: We next study MAPS’ responsiveness to mobility. We
deploy two APs, three static and one mobile client. Static clients C1,
C2 are associated with AP1, and C4 with AP2. C3 is moving with
pedestrian speed around AP2. Our traces show that the highest
RSSI AP for C3 is always AP2. Hence, DenseAP assigns C3 to AP2.
This results in 65 Mbps throughput for C3 and 552 Mbps network
throughput.

MAPS monitors the channel dynamics of the mobile client C3,
and constructs a CSI pro�le for AP2 with three dominant multi-
paths, as shown in Figure 8c. The most dominant path among the
three is represented with the solid line. Interestingly, C3 and C4
channels overlap in space at AP2 (cf. Fig. 8c), which implies corre-
lated channels and high inter-client interference. To avoid client
groups with correlated channels, MAPS will assign C3 to AP1. C3
achieves 91 Mbps throughput at AP1, and the aggregated network
throughput is 663 Mbps (cf. Fig. 8a). This corresponds to a through-
put gain of 40% for C3, compared to DenseAP. Network throughput
is also increased by 20.1%.
Unbalanced tra�c: Di�erent from the previous experiments, we
next evaluate a setting where two APs operating on the same chan-
nel, have unbalanced loads. Speci�cally, clients C1 and C2 are con-
nected to AP1, while AP2 does not serve any client. Let’s now
consider a new client C3 in the network, with similar RSSI from
AP1 and AP2. DenseAP will assign C3 to AP2, to balance the load
across APs. Such assignment results in 75 Mbps and 389 Mbps
throughput for C3 and for the network, respectively. On the other
hand, MAPS will estimate factor wC3,AP1 to be equal to 1, and
wC3,AP2 to be 1/2. Hence, given a negligible inter-client interfer-
ence among C1, C2, C3 at AP1, MAPS will assign C3 to AP1. Such
assignment almost doubles C3’s throughput. It also increases the
network throughput by 50 Mbps.
Delay-sensitive tra�c: We �nally evaluate MAPS over delay-
sensitive tra�c, such as VoIP. In our setting, clients C1, C2 are
connected to AP1, and C4, C5 to AP2. Both APs generate saturated
downlink UDP tra�c to clients. DenseAP assigns a new client C3 to
the highest-RSSI AP1, while MAPS connects C3 to AP2, which max-
imizes MU-MIMO gains. Then, C3 initiates a VoIP call to another
device connected to the AP through Ethernet. Figure 8d shows the
one-way network delay for VoIP tra�c over a 30-second time win-
dow, for C3 at AP1 (DenseAP), and C3 at AP2 (MAPS). We observe
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(a) Aggregated throughput
di�erence for �eld trials.
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(c) Aggregated throughput
di�erence for simulations.
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Figure 9: Throughput and fairness comparison of MAPS, Oracle and DenseAP.
that the average and peak delays are only 1.1 ms and 8.4 ms, when
C3 connects to AP2. This is because MAPS’ assignment allows for
C3, C4, C5 to form an low interference MU-MIMO group. How-
ever, DenseAP assignment results in 11.4⇥ higher average delay
(12.4 ms) compared to MAPS. For 7% of the samples, the delay for
DenseAP exceeds 30ms, which is above the delay requirements
of VoIP applications [16]. This is because C3 mainly operates in
SU-MIMO mode at AP1, due to high inter-client interference with
C1 and C2. Interestingly, Figure 8d shows high delay variations for
DenseAP assignment, with delay peaks up to 94ms. We observe that
such peaks (at [2.7, 8.8] sec. and [23.8, 27.2] sec.) appear, when the
MU-MIMO grouping algorithm tries to group C1, C2, C3 together.
Such grouping creates high PER and low throughput.

6.2 Larger Scale Field Trials
We further experimentally evaluate MAPS in multiple larger scale
topologies with 6 APs and 20 clients. We present the experimental
�oorplan in our technical report [28]. Apart from our APs, we detect
22 more BSSIDs at 5 GHz, to operate in various channels, in the
same RF coverage zone. We run each experiment for 5 minutes at
di�erent times of day considering both static and mobile clients,
and we report experiments from multiple runs. For each run, we
compare MAPS, DenseAP and Oracle, for saturated downlink UDP
and single-�ow TCP tra�c. Figure 9a shows the aggregated (over all
APs and clients) network throughput gains of MAPS over DenseAP.
Each point of the distribution re�ects a di�erent setting. We observe
that MAPS performs similar or better than DenseAP in more than
90% of the settings. For UDP, the gain is at least 149 Mbps in 50%
of the settings, and it can go up to 365 Mbps (which corresponds
to a 52.3% gain). Throughput gains for TCP are smaller (23.6%).
This is because UDP tra�c is always saturated compared to TCP.
The highest gains for MAPS are observed in static client settings,
when clients’ channels are highly correlated. The smallest gains (or
even loss) for MAPS are observed in highly dynamic environments,
where MAPS’ CSI pro�le may not capture the channel dynamics,
and may assign clients to lower RSSI APs, which happen to be
the lower throughput APs. In such settings, DenseAP outperforms
MAPS by up to 95 Mbps (cf. Fig. 9a).

MAPS mostly performs similar to Oracle. Speci�cally, Figure 9a
shows that MAPS throughput is the same with Oracle in 94% of the
settings for UDP, and 75% of the settings for TCP. Oracle outper-
forms MAPS in a few scenarios of highly dynamic environments,
as we discussed above.

Interestingly, MAPS can also improve the throughput fairness
among clients connected to APs in the same vicinity. We illustrate
our �nding in Figure 9b, which plots the di�erence of Jain Fair-
ness Index between MAPS and DenseAP, and between Oracle and

MAPS, for UDP and TCP. MAPS has always equal or larger Jain
index compared to DenseAP. The di�erence exceeds 0.2, which is a
signi�cant gain, if we consider that an index of 1 implies perfect
fairness. Since MAPS limits inter-client interferences (and hence
PER), it does not negatively a�ects certain clients’ TCP windows.
This results in better TCP fairness gains (compared to UDP) over
DenseAP (cf. Fig. 9b). MAPS achieves the same fairness as Oracle
in the vast majority of the settings.

6.3 Trace Driven Simulations
We next conduct trace-driven simulations to evaluate MAPS in
larger scale network topologies. For our simulation, we have col-
lected wireless link performance traces (e.g., CSI, throughput, PER)
from multiple settings. We have also collected per-client tra�c load
statistics from 82 APs of an enterprise Wi-Fi network, to simulate
realistic tra�c scenarios. We then combine these traces to simu-
late larger networks. We simulate scenarios where 20 APs and 108
(static and mobile) clients are placed in a building �oor. The number
of clients per AP varies from 1 to 54.

In Figure 9c, we present the aggregated (over all APs and clients)
network throughput gains of MAPS over DenseAP. We observe that
MAPS always performs similar or better than DenseAP. Speci�cally,
it achieves up to 1.2 Gbps (or 28.6%) and 663.8 Mbps (or 17.5%)
throughput gain over UDP and TCP, respectively. Figure 9c, further
shows that MAPS performs the same as Oracle, for 85% and 60% of
the settings, for UDP and TCP, respectively.

Interestingly, our results show that MAPS’ gains over DenseAP
do not necessarily drop when the number of clients connected to an
AP increases. For example, Table 4 shows the average throughput
for MAPS, DenseAP and Oracle, when the number of clients in
two APs’ vicinity varies from 12 to 108. We observe MAPS’ gains
over DenseAP range from 33% to 45%, with the maximum gain
to be achieved for 108 clients. This is because, the higher num-
ber of clients connected to an AP does not necessarily increase
the MU-MIMO grouping opportunities. Speci�cally, we observe
that the number of candidate clients for grouping at each trans-
mit opportunity (TXOP) is limited by: a) the active clients, b) the
fair scheduler implemented in our AP, which will not reschedule
the clients served in the previous TXOPs, c) the clients’ correlated
channels and channel bandwidth con�gurations. Particularly, we
observe that the MU-MIMO groups’ size for DenseAP is typically
less than maximum supported size of 3 clients, or it often operates
in SU-MIMO.

Finally, our simulations verify that MAPS can improve the fair-
ness among clients, as shown in Figure 9d. In conclusion, our exper-
iments show that MAPS can signi�cantly boost the performance
for large Wi-Fi networks.
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Table 4: Average throughput for varying number of clients.
Total clients 12 36 60 84 108

MAPS Thr. (Mbps) 313 ± 5 314 ± 2 333 ± 1 341 ± 1 346 ± 1
MAPS clients AP1/AP2 6/6 19/17 31/29 40/44 52/56
DenseAP Thr. (Mbps) 223 ± 5 223 ± 2 250 ± 1 242 ± 2 237 ± 1

DenseAP clients AP1/AP2 6/6 18/18 32/32 42/42 54/54
Oracle Thr. (Mbps) 360 ± 3 361 ± 2 360 ± 2 362 ± 1 362 ± 1

Oracle clients AP1/AP2 6/6 19/17 31/29 40/44 52/56

7 RELATEDWORK
There are several studies related to our work.
AP selection: AP selection algorithms can be classi�ed in cen-
tralized [17, 29] and distributed [11, 13, 25]. Similar to MAPS, in
centralized solutions, APs exchange RSSI, tra�c load, interference
feedback with a controller, which decides the network-wide op-
timal client assignment. In distributed algorithms, it is the client
which selects the best AP. However, all the above systems have been
designed for legacy 802.11a/b/g/n networks and are oblivious to
MU-MIMO feature. Hence, they can limit the MU-MIMO grouping
opportunities, as shown by our experiments. AP selection designs
proposed by AP vendors [2, 8], are also RSSI-based and have the
same limitations in MU-MIMO settings.

The theoretical study in [9] jointly solves the problems of MU-
MIMO AP selection and client grouping. It seeks to assign clients
with uncorrelated channels to the same AP. However, such proposal
has two key limitations. First, it is oblivious to clients’ bandwidth
con�gurations, and it does not consider the impact of AP load and
channel utilization to throughput performance. Hence, it performs
poorly in the scenarios described in Sections 3.3, 3.4. Second, our
results have shown that MU-MIMO grouping and AP selection
happen at di�erent time scales (msec. and sec. scales, respectively).
Thus, triggering AP selection at msec. granularity can cause exces-
sive hando� overheads. Di�erent from [9], MAPS decouples these
two functions, and considers clients’ heterogeneity and AP load,
when assigning clients to APs.
MU-MIMO grouping and scheduling: There have been several
MU-MIMO client grouping and scheduling proposals [19, 21, 23, 30].
Such designs can only achieve high MU-MIMO gains, if clients
with uncorrelated channels have been assigned to an AP. Thus,
they can realize their full potential, only by working in concert
with designs like MAPS. Moreover, MU-MIMO grouping designs
leverage explicit beamforming feedback to identify uncorrelated
channels. Such approach requires excessive clients’ hando�s (cf.
Sec. 4.1), and it is not e�cient for AP selection. Hence, MAPS uses
implicit CSI feedback to assign clients to APs.
NetworkMU-MIMO:MAPS assigns clients with orthogonal chan-
nels to APs, to allow forMU-MIMOgroupswith no inter-client inter-
ference. For a given client assignment, recent designs [4, 14, 24, 26]
enable APs and clients in interfering cells to coordinately cancel the
inter-cell interference, using their antennas for beamforming and in-
terference cancellation. Such solutions typically require client-side
modi�cations and are not 802.11-compliant. On the other hand, we
implement MAPS in 802.11ac-compliant commodity APs and con-
trollers. Note that, MAPS could also work in concert with network
MU-MIMO, to further improve performance.

8 CONCLUSION
In this paper, we have studied the AP selection problem in MU-
MIMO Wi-Fi networks, using commodity 802.11ac testbeds. Our
experimental results show that legacy AP selection designs assign

clients with correlated channels and heterogeneous bandwidths
to the same AP, limiting the MU-MIMO grouping opportunities.
Their approach to load balancing is also MU-MIMO oblivious and
can decrease the MU-MIMO gains. To this end, we propose a new
Mu-mimo-Aware AP Selection (MAPS) design, which can identify
the best-throughput client assignment, at low overhead. Our re-
sults show that MAPS signi�cantly outperforms legacy designs. We
believe that MAPS can be a key building block for designing the
future MU-MIMO 802.11ax and 5G networks.
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