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Abstract—Generating a shared secret key between two parties
from the wireless channel is of increasing interest. The procedure
for obtaining information from wireless channel is called channel
probing. Previous works used a constant channel probing rate to
generate a key, but they neither consider the tradeoff between the
key generation rate (KGR) and channel resource consumption,
nor adjust the probing rate according to different scenarios. In
order to satisfy users’ requirement for KGR and to use the
wireless channel efficiently, we first build a mathematical model
of channel probing and derive the relationship between KGR
and probing rate. Second, we introduce an adaptive channel
probing system based on Lempel-Ziv complexity (LZ76) and
Proportional-Integral-Derivative (PID) controller. Our scheme
uses LZ76 to estimate the entropy rate of the channel statistics
(e.g., the Received Signal Strength (RSS)) and the PID controller
to control the channel probing rate. Our experiments show that
this system is able to dynamically adjust its probing rate to
achieve a desired KGR under different moving speeds, different
mobile types, different sites and different desired KGRs. Our
results also show that the standard deviation of the LZ76
calculator is less than 0.15 bits/s. The PID controller is able
to stabilize the key generation rate at a desired value with mean
error of less than 0.3 bits/s.

I. INTRODUCTION

Generating a shared secret key between two parties via pub-

lic communication is a challenging problem in symmetric key

cryptography systems. Diffie-Hellman (D-H) key exchange

protocol is widely used for this purpose. However, it works

under the assumption of the hardness of the discrete logarithm

problem, which has been proven breakable in polynomial

time using quantum computers [1]. Although realistic quantum

computers may not become reality in years, it is desirable

to search for other key agreement mechanisms which do not

depend on computational power. Furthermore, in practical

implementations, D-H key exchange protocol may not pro-

duce a truly random key due to the use of pseudorandom

generators. With the spur of wireless communications, there

is an increasing interest in generating a shared key from the

wireless channel between two parties [2]–[5]. Two wireless

entities exploit reciprocal and location-specific properties of a

wireless fading channel, and obtain highly correlated channel

states and produce identical symmetrical shared secret keys.

A third party (that is more than half a wavelength away

from the legitimate users) can eavesdrop but would not be

able to generate the same key [6]. Therefore, unlike the D-

H key exchange protocol, generating keys from the wireless

channel is information theoretic secure, i.e. no matter how

much computing resources the attacker has, the attacker cannot

break the key.

In recent implementations and experiments, the received

signal strength (RSS) is widely used as the parameter from

wireless channel to generate the shared secret key. The RSS

can be easily obtained from current wireless device drivers, so

it makes key generation using off-the-shelf devices feasible.

We call this process channel probing.

As far as we know, most related works probe the channel

at a preset and constant rate without any consideration for

channel variation. Usually, they prefer to set a high probing

rate to generate a secret key as soon as possible. However,

even though a user could get many frames and a long RSS

sequence, a large part of it will have consecutive duplicate

RSS values and will be discarded. Thus, these extra packets

waste wireless channel resources and increase the cost of the

key generation. On the other hand, it will take an intolerably

long time to generate a key when probing at a very low rate.

As users always have requirements about how much time

they can afford to generate a N -bit long key, we could control

the probing rate to satisfy the key generation rate (KGR)

constraint. In other words, the system does not have to probe

too fast to get a high KGR; only fast enough to avoid using

the channel inefficiently.

The KGR is partly determined by the quantity of infor-

mation from the RSS sequence. The quantity of information

is commonly measured by entropy, proposed by Shannon in

1948 [7]. Furthermore, the entropy rate or source information

rate of a stochastic process is, informally, the time density

of the average information in a stochastic process [8]. Thus,

the KGR is fundamentally determined by the entropy rate and

probing rate.

In this work, we build a mathematical model of the channel

probing system and derive the relationship between key gen-

eration rate and probing rate. When the probing rate increases,

the KGR increases but efficiency decreases.

In experimental situations, the computation of entropy rates

requires a statistical estimator that is unbiased and converging
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fast enough to be accurate on a finite data sample. Unfortu-

nately, since the classical definition of entropy rate is based

on an asymptotic limit, it does not easily lead to an accurate

estimator in the case of a finite-size time series [9]. The

concept of Lempel-Ziv complexity (LZ76) [10], which will

be discussed in Section IV, can be used to obtain accurate

estimates of the entropy rate.

In our paper, we borrow the Proportional-Integral-Derivative

(PID) controller, a generic feedback control loop mechanism

widely used in industrial control systems, to dynamically alter

the probing rate in order to stabilize the KGR to the user’s

requirement.

Our experimental results show that the adaptive channel

probing system could adaptively change its probing rate due

to noise, interference, channel impediments, user movement,

and environment dynamics. Moreover, it could stabilize KGR

by using the PID controller and satisfy the users’ KGR

requirement. If users want to generate a key fast, then the

probing rate will be high but efficiency becomes low. In other

words, channel efficiency depends on how fast the user wants

to generate a key.

The contributions of our paper are:

• Mathematical model of the channel probing is built and

the relationship between key generation and probing rate

is derived.

• Desired key generation rate is satisfied by using a PID

controller under different situations.

The rest of this paper is organized as follows. In Section II,

we discuss the related works. Section III introduces the

mathematical analysis of channel probing in shared secret key

generation. Then, we detail the components of the adaptive

probing system: Lempel-Ziv complexity and PID controller,

in Section IV and Section V, respectively. We present the

experimental results and analysis in Section VI. We conclude

this paper and discuss future work in Section VII.

II. RELATED WORK

There has been an increasing interest in exploiting the

randomness and reciprocity of the wireless channel to generate

shared secret keys between two parties [3], [5], [11]–[13].

Early research in this area focused on theoretical analysis [14]–

[16], while most recent works are more interested in practical

implementations of the key generation schemes using off-the-

shelf wireless devices [2]–[4]. Previous work assumed an au-

thenticated channel while generating shared secret keys [11]–

[13]. One recent work removed this assumption and proposed

a shared secret key generation algorithm using level-crossings

and quantization to extract secret bits from an unauthenticated

wireless channel [3]. Another work proposed a method for key

generation based on phase reciprocity of frequency selective

fading channels [17].

To the best of our knowledge, there is no previous work

discussing the trade-off among the channel probing rate,

key generation rate and bandwidth cost, or adaptively tuning

the channel probing rate according to the channel dynamics

introduced by the environment and user mobility. In this paper,

we address these problems and build a system to achieve

adaptive channel probing in real scenarios using off-the-shelf

devices.

III. CHANNEL PROBING IN SECRET KEY GENERATION

We introduce the process of generating shared secret key

and measuring RSS in this section. We define the utility func-

tion and the KGR function. Then, we derive the relationship

between utility, KGR and probing rate. Finally, we show how

our adaptive probing system works.

A. Shared Secret Key Generation

In general, there are three steps to generate a shared

secret key: advance distillation, information reconciliation, and

privacy amplification [18]. First, advance distillation is used to

collect information. This could be considered as two questions:

what kind of information to collect and how to collect it. In

our work, we extract the RSS from the wireless channel using

off-the-shelf devices. A user sends a packet to the desired

destination and waits for a reply. Both sender and receiver

will receive a packet nearly at the same time and measure

the RSS. Due to the principle of wireless reciprocity, the

train of RSS measurements will have the same behavior on

both sides. Second, information reconciliation is a form of

error correction carried out between legitimate users in order

to ensure the keys generated separately on both sides are

identical. Last, privacy amplification is a method for reducing

(and effectively eliminating) a third party’s partial information

about the legitimate key. This paper only focuses on the first

step.

B. Received Signal Strength

In telecommunications, the received signal strength indi-

cator (RSSI) is a measurement of the power present in a

received radio signal. It is often done in the intermediate

frequency (IF) stage before the IF amplifier and can also be

sampled by an internal Analog-to-Digital Converter (ADC).

The 802.11 standard does not define any relationship between

RSS value and power level in mW or dBm. Vendors provide

their own accuracy, granularity, and range for the actual power

(measured as mW or dBm) and their range of RSS values.

For an arbitrary time t, let S(t) represent an analog

continuous-time received signal strength, shown as a dotted

line in Figure 1. The RSS value at any time t could be

converted by ADC, denoted as Sad(t), shown as a solid line.

Figure 1 shows an example of how ADC quantizes the analog

signal strength, and we call the duration that the ADC converts

a continuous signal to the same RSS value as stagnant time,

denoted as s, such as the time between ta and tb. Stagnant time

varies. Sometimes it is long, such as to−tn, while other times,

it could be very short, such as tj − ti. As the analog signal

S(t) could increase or decrease sharply, or it could also stay

around a tiny range, stagnant time then could tend to infinity

and also to zero.

To probe at each stagnant time, we are able to get only

one non-duplicated RSS value no matter how many times
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Fig. 1. Analog received signal strength with ADC

we probe. We call this RSS value the effective RSS value.

The larger the sum of all effective RSS values, the more

information we can extract from them.

C. Probing Process and Probing Sequence

The process of sending and receiving a probing packet pair,

like ICMP PING and REPLY, is called a probing process. The

time between two probing processes is called probing interval,

or interval, denoted as θ. The larger the interval, the lower the
probing rate, denoted as ν, where ν = 1/θ. A series of probing

processes at the same interval is called a probing sequence.

If the interval is small, the probing process may happen

more than once in a stagnant time that is larger than the

interval, but only obtain an effective RSS value; we consider

this case as inefficient probing. If the interval is large, the

probing process may not occur in a stagnant time that is

smaller than the interval; we call this case inadequate probing.

If the interval is the same length as a series of equal-length

stagnant times, we call this perfect probing. We could get a

series of RSS values in which any two consecutive RSS values

are not equal. However, in practice, a series of stagnant time

will not be of exactly the same length, so perfect probing

is hard. An optimal probing, which could obtain information

from the channel as much as possible and also could probe in

an efficient way, is the focus in this work.

D. Stagnant Time Distribution

For a given stochastic process S(t) and non-constant func-

tion Sad(t), we have the discrete distribution D(si) of stagnant
times for Sad(t) shown as histogram in Figure 2, where

i ∈ N+, smin < si < smax, smin and smax are the minimum

and maximum stagnant time, respectively. For an arbitrary

value i, sj is the next larger stagnant time after si, then the

difference between si and sj is ∆si. We consider the sum of

stagnant times equal to si is D(si)∆si. Therefore, the total

number of all different stagnant times is
∑max

i=min D(si)∆si.

When i is an arbitrary value, if ∆si → 0, we have

max∑
i=min

D(si)∆si =

∫ max

min

d(s)ds, (1)

where d(s) is a fitted continuous curve, as solid line in

Figure 2, from the discrete distribution D(si), and d(s) >
0, smin ≤ s ≤ smax.
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Fig. 2. Distribution functions of stagnant times

E. Functions and Properties

Suppose that the interval of a probing sequence is θ, and
0 < smin < θ < smax. For any s > θ, this is an inefficient

probing and we obtain a sum of effective RSS values, that is

I2(θ) =
∫ smax

θ
d(s)ds, where I2(θ) is shown in Figure 2.

How many effective RSS values can we obtain from those

stagnant time smin ≤ s ≤ θ? This is an inadequate probing

and the probing process will miss some of the stagnant times.

The smaller the stagnant time, the larger the missing probabil-

ity. Therefore, the sum of effective RSS values we could obtain

is I1(θ) =
∫ θ

smin

dI(s)ds, where dI(s) = d(s) s
θ
, smin ≤ s ≤

θ and dI(s) and I1(θ) are shown in Figure 2. So, the total

number of all effective RSS values is

I(θ) = I1(θ) + I2(θ). (2)

Since we can obtain more information from larger I(θ) values,
we call I(θ) the information function.

When s > θ, as an inefficient probing, some stagnant

times will be probably probed more than once. The larger

the stagnant time, the larger the re-probing probability. When

re-probing happen at a stagnant time, only one RSS value is

considered as effective, the others are called ineffective RSS

values. The total number of all ineffective RSS values is

E(θ) =

∫ smax

θ

(dE(s) − d(s))ds, (3)

where dE(s) = d(s) s
θ
, θ < s ≤ smax. dE(s) and E(θ)

are shown in Figure 2. Since the larger E(θ) is, the more

inefficient probing becomes, we call E(θ) the inefficiency

function.

Obviously, when the interval θ is getting larger, less effec-

tive RSS values will be obtained but the sum of ineffective

RSS values decreases. The utility function is defined as

U(θ) =
I(θ)

E(θ)
. (4)

Lemma 1: When the probing interval becoming larger, in-

formation and inefficiency functions both decrease. But, the

utility function increases.

Proof: According to Eq. 2 and Eq. 3, the derivatives of

θ for functions I(θ) and E(θ) are

I ′(θ) = [1
θ

∫ θ

smin

d(s)sds]′ + [
∫ smax

θ
d(s)ds]′

= − 1
θ2

∫ θ

smin

d(s)sds
(5)
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Fig. 3. Relationship between I(θ) and IA(θ)

E′(θ) = [

∫ smax

θ

(d(s)
s

θ
− d(s))ds]′ = −

1

θ2

∫ smax

θ

d(s)sds.

(6)

As 0 < smin < θ < smax and d(s) > 0, we have

I ′(θ) < 0, E′(θ) < 0. Therefore, information and inefficiency

functions are both decreasing with θ.
The derivative of utility function U(θ) is

U ′(θ) = 1
(E(θ))2 [I ′(θ)E(θ) − I(θ)E′(θ)]

= 1
[E(θ)θ]2 [

∫ smax

θ
d(s)ds

∫ smax

θ
d(s)sds

+
∫ smax

θ
d(s)ds

∫ θ

smin

d(s)sds].

(7)

As 0 < smin < θ < smax and d(s) > 0, we have U ′(θ) >
0. Therefore, utility function increases with θ.
Even if 0 < θ ≤ smin or θ ≥ smax, all lemmas are correct.

F. Key Generation Rate

We define the key generation rate as

K(θ) =
IA(θ)

T
, (8)

where IA(θ) is the information estimation function based on

Lempel-Ziv complexity and is proportional to I(θ), and T is

the duration of probing sequence. The relationship between

I(θ) and IA(θ) is shown in Figure 3. Due to page limitations,

further expositions and proofs are omitted. If a user’s KGR

requirement is κ, the PING interval should be θ = K−1(κ),
where K−1(·) is the inverse function of K(·).
Lemma 2: When the interval θ becoming larger, the key

generation rate decreases.

Proof: As derived in Lemma 1, I(·) is a decreasing

function, and so is IA(·). Therefore, K(θ) = IA(θ)/T is also

a decreasing function.

Lemma 3: When KGR becoming larger, utility decreases.

Proof:When K(θ) increases, according to Eq. 8, we have

IA(θ) increasing and I(θ) increasing. As I ′(θ) < 0, in order to
increase I(θ), we decrease θ. As U ′(θ) > 0, when θ decreases,

we have U(θ) decreasing.

G. Adaptive Wireless Channel Probing System

In order to resolve θ = K−1(κ), we introduce a PID

controller to dynamically alter the PING interval and then

to reduce the error between κ and actual KGR. Figure 4

represents a workflow of adaptive wireless channel probing

system. After tuning parameters, such as the probing rate (i.e.

time interval), the system starts to monitor the radio channel

Parameter Tuning

ie. Probing Rate

START

Monitor Initial

TCPDUMP

Channel Probing

by ICMP PING
RSS Extraction

PID Controller

Entropy Rate & Key 

Generation Rate Calculator

Key Generation Rate

Fig. 4. Workflow of adaptive channel probing system

and one of the users then probes the channel by continually

sending ICMP PING packets for a fixed duration, denoted as

Tping . Then legitimate users receive a series of PING packets

and REPLY packets, respectively. RSS values are extracted,

and then the entropy rate is estimated by LZ76 calculator and

thereafter the KGR is calculated. Finally, the PID controller

compares current loop KGR with desired KGR κ, then makes

a new probing rate for next loop.

IV. LEMPEL-ZIV COMPLEXITY

In order to measure the quantity of information from a

stochastic process, we give a brief introduction about entropy

and entropy rate, which is practically estimated by Lempel-Ziv

complexity. Then, the information estimation function IA(θ)
and a new KGR function are given.

A. Entropy and Entropy Rate

Let X be a random variable or random vector, taking values

in an arbitrary finite set A, its alphabet, and with distribution

probability p(x) = Pr{X = x} for x ∈ A. The entropy of

X [8] is defined as,

H(X) = H(p) = −
∑
x∈A

p(x) log p(x). (9)

The entropy rate H , or ”per-symbol” entropy, of X is

H = H(x) = lim
n→∞

1

n
H(X1, X2, · · · , Xn), (10)

whenever the limit exists, where H(X1, X2, · · · , Xn) is

the entropy of the jointly distributed random variables

(X1, X2, · · · , Xn).

B. Lempel-Ziv Complexity

We want to stress that the entropy is a property of sources

and therefore difficult to evaluate [19]. In fact, the knowl-

edge of the probability distribution involved in its calculation

requires, in principle, an extensive sampling that usually

cannot be performed, not to mention the reproducibility of the

test conditions [20]. In contrast, the complexity as originally

formulated by Lempel and Ziv (LZ76) [10] is a property of

individual sequences that can be used to estimate the entropy.
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Because of page limitations, we only give a brief introduction

to show how LZ76 works. Any further properties and formal

expression can be found in reference [10].

For a bitstring XN = [x1, · · · , xN ] of length N with xi ∈
{0, 1}, a procedure that partitions XN into non-overlapping

substrings is called a parsing. A substring starting at position

i and ending at position j of XN which is the result of a

parsing procedure is called a phrase XN(i, j). The set of

phrases generated by a parsing of XN is denoted with PXN

and the number of phrases |PXN | is denoted by q. Assume

that a bitstring XN has been parsed up to position i, so that

PXN (1, i) is the set of phrases generated so far. The next

phrase XN (i + 1, j) will be the first substring which is not

yet an element of PXN (1, i). As an illustration, the string

0011001010100111 will be parsed as

0 · 01 · 10 · 010 · 10100 · 111,

where q = 6.

In general, we define LZ76 value as

CLZ(XN ) =
q[logd q + 1]

N
, (11)

where d is diversity of samples in X or range of x, and

0 ≤ CLZ(XN ) ≤ log2 d. (12)

For a random sequence XN from an ergodic and stationary

source, entropy rate tends to [8], [21]

H = lim
N→∞

CLZ(XN ). (13)

In our paper, the RSS sequence is considered to be an

ergodic and stationary source in a given time, like 1 second,

if moving speed of user is not extremely high.

C. Information and KGR Function

During time T of a probing sequence, sum of the received

RSS values is N , where N = T/θ. We could estimate

information by IA(θ) = CLZ(XN )N = CLZ(XN )T
θ
. Fur-

thermore, from Eq. 8, we have detailed KGR function,

K(θ) =
IA(θ)

T
=

CLZ(XN )

θ
, (14)

where 0 < θ ≤ θmax, and θmax will be discussed in

Section VI.

V. PID CONTROLLER

Resolving θ = K−1(κ) is critical. Unfortunately, an accu-

rate relationship between κ and θ is not known in advance.

Even though we take many tests to successfully get the

function of K−1(·), we will fail to resolve when users or other

objects move, or when the radio environment varies. That is

why we have to introduce feedback control to let the system

reduce the error between actual KGR and desired KGR κ, also
called setpoint, by adjusting the PING interval.

PID

Controller

Actuator

PING

Process

MONITOR

LZ76 & KGR 

Caculator

+ _

Disturbance

RSS 

Sequence
Setpoint

KGR

error interval

Fig. 5. Frame of PID control system

A. System Model

A series of probing processes with same interval is a probing

sequence. We also call it a loop for the controller. In the ith
loop, we set PING interval θi as input to probe channel. At

the end of this loop, we get entropy rate CLZ(i) and key

generation rate ki as output and feedback to compare with κ.
The PID controller then calculates a new interval θi+1 for the

next loop. The controller model is

θi+1 =θi + CP (ki − κ)

+CI(
∑i

N=i−α(ki − κ)) + CD(ki − ki−1),
(15)

where i = 1, 2, · · · , and α is the order of integral gain.

CP , CI and CD are proportional gain, integral gain and

derivative gain, respectively. Figure 5 shows the frame of

control system.

Tping should be of appropriate duration. A large Tping

would decrease control performance while a small Tping

would decrease the stability of LZ76 calculator to estimate

entropy rate. Tping is a fixed parameter in our system, as 1

second. In order to keep the LZ76 calculator stable, we should

limit the upper bound of θ, denoted as θmax. As the limitation

of hardware, we set the lower bound of θ at 1 ms. Thus, we

have

1ms < θ ≤ θmax. (16)

B. Stability

Define 1 (BIBO stability): BIBO stands for Bounded-Input

Bounded-Output. If a system is BIBO stable, then the output

will be bounded for every input to the system that is bounded.

Lemma 4: Our proposed PID control system is BIBO sta-

ble.

Proof: In our system, the interval is considered as input

while KGR as output. Input θ is bounded in Eq. 16. Eq. 12

tells CLZ(XN ) is bounded between 0 and log2 d, and K(·) in
Eq. 14 is bounded. Therefore, our system is BIBO stable.

C. Gain Parameters Tuning

The Ziegler-Nichols tuning method is a heuristic method of

tuning a PID controller [22]. It is performed by setting the I
and D gains to zero. The P gain is then increased (from zero)

until it reaches the ultimate gain Cu, at which the output of

the control loop oscillates with a constant amplitude. Cu and

the oscillation period Tu are used to set the CP , CI , and CD

gains. They are CP = Cu/1.7, CI = Tu/2, CD = Tu/8.
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line random

Fig. 6. Mobile type in Adams Community

VI. EXPERIMENT AND RESULTS

Our adaptive probing system runs on a platform that is

composed of two DELL E5400 laptops with Intel WiFi Link

5300 802.11a/g/n wireless card. They both run a modified Fe-

dora Linux kernel version 2.6.29-rc5-wl based on the wireless-

testing tree. We made modifications to the Linux wireless

device driver (iwlagn), the 802.11 stack (mac80211) and

the kernel-to-userspace communication library (radiotap) for

instrumentation purposes. The modifications allow the nodes

to control the transmitter antenna and to record all three

antenna RSS values per frame on frame reception. The RSS

provided by the driver is an integer value in the range [-95,-

20].

A. Experimental Setup

Outdoor and Indoor: The outdoor experiments are con-

ducted at the Adams Terrace community in Davis, CA, USA.

As shown in Figure 6, it is an open narrow straight road with

several cars parked along the side and there are few people or

cars moving along. The indoor experiments are conducted in

a second floor bedroom of a townhouse.

Offline and Online: The procedure where laptops PING each

other for a given time (60 seconds) at a constant interval

without the PID controller is called the offline experiment,

which is used to collect an RSS log and analyze the rela-

tionship between the interval and other metrics. The online

experiment uses the PID controller to make KGR stable at

setpoint, and logs operating parameters, which are used to

analyze the performance of the system.

Static and Mobile, Line and Random: From Figure 6, we

consider a static experiment if Alice and Bob are both fixed

and no people or cars running through the road. We call it a

mobile experiment if either one of them is moving. The mobile

type includes line and random movements, shown as solid line

and broken line, respectively.

The two laptops’ transmission power are both set at 15 dBm.

Moving speed is measured by a hand-held GPS.

B. Parameters: LZ76 Calculator

According to Eq. 11, Lempel-Ziv complexity of a finite

sequence is determined by q, d, N . In a loop, q is calculated

by a Python script after a finite sequence of RSS values. N
is the length of a RSS sequence, that relate to the interval θ
and duration time of a loop. d is a fixed number and is related

to the diversity of RSS values. As our wireless card provides

RSSI from -95 to -20 dBm, we consider diversity d as the

total range, d = 75.
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Fig. 7. Stand deviation of LZ76 calculator

TABLE I
STAND DEVIATION OF LZ76 IN 1 SECOND

Interval(ms) 1 45 125 205

Standard Deviation 0.0725 0.0380 0.1013 0.1401

As mentioned in Eq. 13, LZ76 is used to estimate entropy

rate. If the sum of RSS values is not large enough, the LZ76

calculator will not be stable. Stable here means outputs of

LZ76 calculator have a small variation.

We conduct a series of offline-outdoor-line-mobile exper-

iments. PING interval θ is set as 5, 25,45, · · · , 205 and 1

milliseconds (ms). After logging down all RSS into 12 files,

we take one as an example to process data. As timestamps

and RSS are both recorded, we select the RSS from the first

timeslot of 200 ms as a group. The later RSS in the next

timeslot of 200 ms as second group, and so on. We then

calculate CLZ of each group, and mean and standard deviation

of those CLZ . We then increase the timeslot from 200 ms to

400 ms. Next, we continue to increase timeslot, stepping at

200 ms, till 4 seconds. The same process is repeated on all

the other log files.

Figure 7 shows standard deviation of CLZ at different

probing rates when timeslot increases from 200ms to 4s. Also

shown in Table I, when timeslot is set as 1 second, standard

deviations are all less than 0.15. As CLZ in our experiments

are mainly distributed from 0.6 to 1.2, standard deviation less

than 0.15 could be considered as small enough. So, a timeslot

of 1 second (i.e. Tping = 1) and a PING interval of no more

than 200ms (i.e. θmax = 200ms) could make LZ76 calculator

stable.

C. Probing Rate vs LZ76

The relationship between LZ76 and probing rate is an

important question. We agree with that a high probing rate

would produce low LZ76, and vice versa. Here we adopt log

files from the last experiment as Scenario I, and the timeslot is

set as 1 second. The mean and standard deviation of CLZ are

drawn in Figure 8. In Scenario II, both laptops are static and

separated away from each other about 30 meters. The PING

interval is set as same as that in Scenario I. The mean of CLZ

in scenario II, shown in Figure 9, is not increasing as smoothly

as the one in scenario I in Figure 8. Moreover, the CLZ at any

interval in Scenario I is larger than the one in scenario II. The

CLZ of static scenario could only rise to 0.79 at interval of
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205 ms, while mobile scenario reach 0.9 at interval of 25 ms.

This result is reasonable. If two users are static, the channel is

relatively stable. We are not able to obtain much randomness

from this channel in a given time.

D. Probing Rate vs Key Generation Rate

Logs from previous offline experiments are analyzed in

order to get the relationship between probing rate and KGR,

which is calculated by Eq. 14. Figure 10 shows the results in

mobile and static scenarios. At the same interval, the KGR is

lower in the static scenario than that in the mobile scenario. To

produce same KGR, it has to probe faster in the static scenario

than in the mobile scenario. This indicates again that the users’

movement increases the randomness of channel. Furthermore,

the KGR in both scenarios decrease with interval θ, which has

been derived by mathematical analysis in Lemma 2

E. Experimental Parameters: PID Controller

According to the Ziegler-Nichols method [22], the tuning

parameters of PID controller are: CP = 0.0001, CI =

0.000044, CD = 0.000011. The setpoint of the controller (i.e.,
desired KGR), is 50 bits/s and Tping = 1s.

F. Metrics of Performance

Before listing metrics for online experiments, we introduce

Duplicated Index (DI) to express the efficiency of the probing

sequence. The larger the DI, the lower the efficiency. If we

have a sequence like: ”AABBBCCCCC”, character ”A” has 1

duplicate and ineffective copy, and the weight of A over whole

sequence is 2/10. The same process is repeated on the other

characters. Thus, we have DI = 1× 2
10 +2× 3

10 +4× 5
10 = 2.8.

Here is the list of performance metrics studied:

• KGR mean error: |
∑N

i=1 ki/N − setpoint|.
• KGR oscillation frequency: the times that ki crosses

through setpoint, denoted as Nosc, and oscillation fre-

quency fosc = Nosc/N .

• KGR overshoot: denote mean of overshoot as overshoot-

mean and standard deviation of overshoot as overshoot-

std.

• KGR settling time: when ki first reach setpoint, consider

the loop number as settling time.

• Ping interval: calculate mean and standard deviation of

interval.

• Efficiency: duplicated index DI ,

where ki is key generation rate at ith loop, i = 1, 2, · · · , N ,

and N is determined by online running time. All metrics above

are used from Table II to Table IV.

G. Variable Motion

We conduct a series of online outdoor experiments with the

PID controller. The first group of experiments shows how the

interval varies when one user’s moving speed changes from

0 m/s to about 1 m/s then back to 0 m/s within 90 seconds.

As shown in Figure 11, at the beginning, users are both static

and KGR is stabilized around 50 bits/s but with a very large

overshoot. At about 32 seconds, one user starts to move.

Suddenly, KGR increases sharply as a response, as movement

introduces more randomness. Then, the PID controller makes

the PING interval increasing in order to stabilize the KGR

back to 50. At about 60 seconds, the mobile user stops. The

KGR decreases and then the interval decreases. Results show

that the KGR in the mobile phase seems more stable than in

the static phase, and show that the PING interval is larger in

the mobile phase than that in the static phase. The reason that

the KGR overshoot in the mobile phase is much smaller than

that in the static phase will be discussed in Section VII.

The second group of experiments shows how the user’s

moving speed affects system performance, shown in Table II.

Setpoint is set at 50 bits/s. The mean errors of KGR in three

different speeds are smaller than 0.3, we consider this as a

contribution of PID controller. The faster the user moves,

the smaller the oscillation frequency, and the smaller the

overshoot. The most important results are that the faster the

user moves, the larger the PING interval, and the larger the

efficiency. Our adaptive probing system could adapt to speed

variations; it decreases probing rate when the moving speed
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TABLE II
DIFFERENT SPEEDS

Moving Speed 0.3 m/s 0.8 m/s 1.5 m/s

Mean Error 0.0984 0.2426 0.1350

Oscillation Frequency 0.6000 0.5167 0.4583

Overshooting-mean 7.6733 6.0464 5.3605

Overshooting-std 8.1752 5.5041 4.6627

Settling Time (loop) 3 3 4

Ping Interval-mean 0.0171 0.0191 0.0282

Ping Interval-std 0.0036 0.0026 0.0022

Duplicated Index 1.7137 0.8969 0.6120

TABLE III
DIFFERENT MOBILE TYPES

Motion Type Line Random

Mean Error 0.0984 0.1496

Oscillation Frequency 0.6000 0.5167

Overshooting-mean 7.6733 7.3213

Overshooting-std 8.1752 11.5540

Settling Time (loop) 3 2

Ping Interval-mean 0.0171 0.0195

Ping Interval-std 0.0036 0.0037

Duplicated Index 1.7137 1.6496

rises. That is because the channel varies faster when the users

move fast, so more random information is obtained.

The third group of experiments studies whether the type of

movement affects performance. Line and random movements

are drawn in Figure 6 and results are listed in Table III.

The PING interval is larger in random type than in line

type; this means the random mobile would extract more

randomness information from wireless channel. Furthermore,

random mobile has higher efficiency.

H. Different Sites

Another group of experiments are conducted to get the dif-

ference in performance between outdoor scenario and indoor

scenario. Results are listed in Table IV, they show that the

interval in indoor scenario is a little larger than that of outdoor

scenario. This is caused by more complicated reflect and multi-

path effects in indoor scenarios, so the system can probe more

slowly, with a higher efficiency.

TABLE IV
DIFFERENT SITES

Motion Type outdoor indoor

Mean Error 0.0984 0.8007

Oscillation Frequency 0.6000 0.5333

Overshooting-mean 7.6733 4.7323

Overshooting-std 8.1752 6.4082

Settling Time (loop) 3 3

Ping Interval-mean 0.0171 0.0212

Ping Interval-std 0.0036 0.0019

Duplicated Index 1.7137 1.5146
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I. Different Setpoint KGRs

The KGR, as setpoint in the PID controller, has been set at

50 bits/s in all previous experiments. This implies that we can

generate a 50-bit key in 1 second. Obviously, the higher the

setpoint, the faster we can generate a key, however, the lower

the efficiency will be. This has been derived by mathematical

analysis in Lemma 3. We conduct a new group online-moving

experiment at home and set KGR at 10, 30, 50, 100, 200 and

300, respectively. What we are interested in is mainly how the

interval and efficiency vary, shown in Figure 12. If we want

to generate a key fast, then the probing rate will be high but

efficiency become low, and vice versa. This tells users that if

they want to use the channel efficiently, they should not set

their KGR too high.

VII. CONCLUSION AND DISCUSSION

In order to satisfy users’ requirement for key generation

rate and to use the wireless channel in an efficient way,

we introduce an adaptive channel probing system based on

Lempel-Ziv complexity and PID controller. Theoretically, we

build a mathematical model for channel probing and derive

that the key generation rate (KGR) is proportional to probing

rate. A utility function is also proposed and shows that the

slower the probing rate, the higher the utility. However, too

slow a probing rate is not acceptable by users who want

to generate a key within a given time. In our paper, we

avoid making an intractable decision between probing rate and

efficiency. We instead consider satisfying the users’ KGR as

the primary goal. The PID controller is used to stabilize KGR

as output according to input, such as PING interval.

A series of experiments are conducted to test performance

in different speeds, different mobile types, different sites and



9

different KGRs. Experimental results show that our channel

probing system can adaptively change its probing rate due

to noise, interference, other channel impediments, user move-

ment and environment dynamics. It not only satisfies user’s

KGR requirement, but also makes the probing process as more

efficient as possible.

However, from the experiments above, the overshoot of

KGR seems a bit large. This may be as a result of three

reasons. First, as the interval in the current loop is determined

by KGR in last loop, and channel condition is not predictable.

It is impossible to stabilize KGR exactly at setpoint. Second,

the accuracy of the LZ76 calculator to estimate entropy

rate is not high enough if the RSS sequence is not long

enough. Extending PING time may improve the accuracy of

LZ76 calculator. However, extending PING time may result

in instability of the controller. Third, the parameters of PID

controller may not be optimal.

Overshoot of KGR in Figure 11 tells a different problem.

Larger overshoot in static phase is caused by the PID con-

troller. In static phase, the interval is very small in order to

satisfy desired KGR. For example, if the current KGR error

is k, PID controller will subtract 1 ms from last interval to

get a new interval. However, subtracting 1 ms from 2 ms in

the static phase is very different from subtracting 1ms from

20 ms in the mobile static. This will cause large overshoot

in static phase. Basically, that is because the control object is

nonlinear but the controller is linear.

In order to solve the control problem mentioned above and

improve the performance of system, we can use the adaptive

controller to cope with the fact that the parameters of the

system being controlled are slowly time-varying or uncertain,

and this approach is considered our future work.
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