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Abstract—Collaborative spectrum sensing is a key technology
in cognitive radio networks (CRNs). It is inaccurate if spectrum
sensing nodes are malicious. Although mobility is an inherent
property of wireless networks, there has been no prior work
studying the detection of malicious users for collaborative spec-
trum sensing in mobile CRNs. Existing solutions based on user
trust for secure collaborative spectrum sensing cannot be applied
to mobile scenarios, since they do not consider the location
diversity of the network, thus over penalize honest users who are
at locations with severe pathloss. In this paper, we propose to use
two trust parameters, Location Reliability and Malicious Inten-
tion (LRMI), to improve malicious and primary user detection in
mobile CRNs under attacks. Location Reliability reflects pathloss
characteristics of the wireless channel and Malicious Intention
captures the true intention of secondary users, respectively.
Simulations of our proposed detection mechanisms, LRMI, show
that mobility helps train location reliability and detect malicious
users. We show an improvement of malicious user detection rate
by 3 times and primary user detection rate by 20% at false alarm
rate of 5%, respectively.

I. INTRODUCTION

With the ever-increasing wireless applications and traffic

demand, spectrum shortage becomes a more severe and urgent

problem. Cognitive radio technology [1] is considered as a

promising solution to improve the spectrum utilization and

alleviate the spectrum shortage. The basic idea of CRNs is that

when the primary (licensed) users are absent, the secondary

(unlicensed) cognitive users can opportunistically access the

primary users’ spectrum, but have to evacuate when the pri-

mary users emerge. Collaborative spectrum sensing is widely

used for accommodating this dynamic and opportunistic spec-

trum access in CRNs [2]. In collaborative spectrum sensing,

multiple secondary users sense the spectrum in a periodical or

on-demand manner, and report their sensing results to a fusion

center, which processes the reports and decides the presence or

absence of a primary user. This collaborative spectrum sensing

paradigm opens a hole to the attackers who can falsify the

sensing results.

Existing solutions for detecting the sensing falsification

attacks have focused on identifying the attackers as abnormal

within a small area or for static secondary users [3], [4],

[5], [6], [7]. Basically, when a user’s report deviates from

common readings beyond a certain threshold, its trust value

is degraded. A dishonest attacker can thus be identified, and

its negative impact on the spectrum sensing can be weak-

ened or eliminated. However, these solutions have two major

limitations. First, they assume the whole area has the same

channel propagation characteristics, which is not practical. It

has been found that the path-loss are different at different

sensing regions [8]. Second, they assume the users are static

and cannot be directly applied to mobile scenarios. To the best

of our knowledge, no prior work has studied the impact of

mobility on the collaborative spectrum sensing under attacks

or provided applicable solutions.

In this paper, we propose to use two trust parameters,

Location Reliability and Malicious Intention (LRMI), to im-

prove malicious and hence primary user detection in mobile

CRNs under attacks. Location Reliability (LR) reflects path-

loss characteristics of the wireless channel and Malicious

Intention (MI) captures the true intention of secondary users,

respectively. We conduct extensive simulations to evaluate our

proposed mechanisms and compare their performance with

existing solutions. Our proposed detection mechanisms based

on LRMI significantly outperforms existing solutions in terms

of improving the malicious user detection rate by 3 times

and primary user detection rate by 20% at false alarm rate

of 5%, respectively. We find that with increase in number of

users, mobility and system observation time, performance of

our proposed scheme improves.

The paper is organized as follows. Section II discusses the

related work. The system model is introduced in Section III

followed by the problem formulation and our proposed solu-

tions in Section IV. We evaluate our solutions and conclude

this paper in Section V and Section VI, respectively.

II. RELATED WORK

The performance gains, achieved by collaborative spec-

trum sensing in CRN is well established in literature. The

centralized collaborative spectrum sensing has been included

in the IEEE 802.22 standard draft [9]. The authors in [10],

study impact of mobility on collaborative spectrum sensing.

The authors show that because of mobility, the secondary

user sensing results get uncorrelated faster thus giving better

performance compared to spectrum sensing performed by

static secondary users but does not consider the presence of

malicious users.

To identify the malicious users in the CRN, the evaluation

of trust for each secondary user under collaborative spectrum

sensing has been addressed using different techniques in

the literature. In the solution proposed by authors in [5],

secondary users in close proximity are grouped into clusters

and the system detects abnormal reports using shadow-fading



correlation filters. The authors in [4] evaluates the secondary

users trust, comparing deviation suffered by each secondary

user’s sensing measurement from the average measurement

reported at the fusion center.

The Bayesian rule is applied in [6] to compute the a

posteriori probability of being an attacker for each secondary

user. When the posteriori probability of a certain secondary

user exceeds the suspicious level threshold, it is claimed to be

an attacker and is removed from the collaboration. For multiple

attackers, the large number of combinations of attackers and

honest users is removed by using an onion-peeling based ap-

proximation to reduce computational complexity. Abnormality

detection algorithm based on proximity, which is widely used

in the field of data mining has been introduced in [3], to solve

the problem of malicious users in the system using history

reports of each secondary user. The proposed architecture in

[7], needs to collect spectrum sensing data from multiple

sources or equipment on consumer premises. This process

is known as crowdsourcing. The authors consider the area

of interest is divided in cells and the credibility of these

devices are kept in check by corroboration and merging among

neighboring cells. The corroboration in a hierarchical structure

is used to identify cells with significant number of malicious

nodes.

To the best of our knowledge, none of the existing work

studied malicious and primary user detection for mobile CRNs.

Our proposed solutions are different from all the existing

solutions that we separate the location reliability from the

user trust, thus achieve better performance on malicious user

detection.

III. SYSTEM MODEL

Fusion Center

Mobile Secondary User

Primary User

Fig. 1. System Model

We divide the area of interest into a grid (Figure 1) and

each cell in a grid is assumed to experience path-loss exponent

and shadowing characteristic of that cell. The assumption is

reasonable since some areas will have deep fade caused by

buildings, trees etc. compared to others. We use the term

location and cell interchangeably in the rest of the document

for cell in the grid. Our approach supports any number of cells

with any shape and size depending on the required granularity.

The primary user detection is modeled as a hypothesis test. At

decision slot k, the null hypothesis H0 indicates the primary

user is idle, while the alternative hypothesis H1 indicates

the primary user is active. We further assume that the time

the system is in either of the states H0 and H1 follow

exponential distributions as commonly used in the literature,

and that durations of successive active and inactive periods are

independent of each other.

Let U = {u1, u2, ..., ui, ..., uN} be set of N users in the

system. Let C = {c1, c2, ..., cj , ..., cL} be the set of cell

identification numbers of L cells in the grid. If the bandwidth

of the primary user signal is W , at each sensing slot, each user

takes 2TW samples with the sample interval of T . Assuming

the noise and primary signal to be uncorrelated, the distribution

of the energy detector output for the kth sensing slot for user

ui at location cj [2] is,

Y j
i,k ∼

{

χ2
2TW H0

χ2
2TW (2γj

i,k) H1
(1)

where γj
i,k =

|hj

i,k
|2Pt

N0W
=

Pr
j

i,k

N0W
is referred as instantaneous

signal-to-noise ratio experienced by a secondary user for

transmit power Pt and channel gain hj
i,k at cell cj . χ2

2TW

and χ2
2TW (2γj

i,k) denote central and non-central chi-square

distributions with 2TW degrees of freedom, respectively.

Assuming channel bandwidth is much larger than the coher-

ent bandwidth, effect of multi-path fading is negligible. The

received primary user power at secondary user at a distance

di,k from primary user can be expressed as [11] in dB:

Prj
i,k(dB) = Pt(dB) − {PL0 + 10αj log10(

di,k

d0
) + ψj} (2)

where PL0 is a path-loss at a reference distance d0 in dB and

is close to 20log10( 4πd0

λ
), where λ is wavelength. Path-loss

exponent αj ranges from 2 to 5 [8]. Empirical measurements

support the log-normal distribution for ψj in dB.

The raw sensed signal power values are sent from secondary

users to the fusion center, known as soft-combining whereas in

hard-combining techniques a 0/1 decision from each secondary

user is considered. We consider soft-combining in this paper

because its performance is much better than hard-combining

with only a slightly higher communication overhead [2]. At

each sensing slot k, each user reports Y j
i,k along with their

current cell cj to the fusion center. In collaborative spectrum

sensing, the fusion center will make a decision at each sensing

slot whether primary user is active or not based on the reports

received from the secondary users in the system.

The efficiency of such collaboration is reduced by the

presence of malicious users. Each malicious user thwarts the

system performance by-

• Reporting an increased observation (Y j
i,k + ∆) when the

primary user is inactive, thus increasing the false-alarm

rate.

• Reporting a decreased observation (Y j
i,k − ∆) when

the primary user is active, thus increasing the missed-

detection rate.

• Reporting incorrect cell number cj .

We assume that each malicious user acts independently at

each sensing slot. If the reliability of a user assigned by



fusion center drops below a certain threshold (ξ), the user

is considered malicious. Faulty nodes are not a part of the

system. The number of malicious secondary users are always

less than the number of honest users in the system.

IV. MALICIOUS USER(S) AND PRIMARY USER DETECTION

We, propose to evaluate the reports at the fusion center

based on two sources of evidence associated with each report

- cell from which the report is generated (Location Reliability)

and who has generated the report (Malicious Intention).

Location Reliability (LR)

Algorithm 1 Location Reliability (LR)

Initialize K
S(cj) = {φ}, E(cj) = 0∀cj and β0(cj) = 1

L
∀cj

totrep(cj) = 0∀j
For each k
for cj = 1 → L do

if R has cj then

r = number of reports from cell cj .

totrep(cj) = totrep(cj) + r
S(cj) = S(cj)

⋃

{Y j
i,k}

E(cj) =
P

S(cj)
totrep(cj)

end if

end for

βk(cj) =
E(cj)

P

j
E(cj)

Using Algorithm 1, the fusion center, evaluates the trust

of each cell. At the beginning of the algorithm, all cells are

given same trust values. We group the current reports, R
with past reports based on the cell location informed by the

secondary users. totrep represents number of reports received

from the cell. At end of each sensing slot, we evaluate βk(cj),
the average sensing measurements reported from each cell,

equivalent to the trust of a cell.

The malicious secondary users being mobile, their impact

is distributed across the cells and is not concentrated in

a particular cell(s). This user-diversity in a cell helps in

convergence of βk(cj) for cell cj . Higher the user mobility,

faster is the convergence of LR for the same system settings.

Malicious Intention (MI)

The true intention of a secondary user cannot be captured

entirely by their respective sensing reports as honest users can

be in bad locations experiencing deep path-loss and malicious

users can be in good locations and vice versa. We use

Dempster-Shafer (D-S) theory [12] to evaluate trustworthiness

in collaborative spectrum sensing in mobile CRNs. In dynamic

mobile CRNs, the D-S theory is well suited for two reasons -

1) it reflects uncertainty and the D-S theory rule of combina-

tion, 2) combines evidences from two or more sources to form

inferences. The frame of discernment Θui
= {T,−T} denotes

a set of mutually exclusive and exhaustive hypotheses about

the problem domain - if user ui is trustworthy or malicious.

The power set 2Θui is {φ, T,−T, {T,−T}}. The Belief Mass

Assignment (bma) for user ui, represented by mui
, defines a

mapping of the power set to the interval between 0 and 1. For

each k,

mui
: 2Θui → [0 1],mui

(φ) = 0,
∑

Ak∈2Θui

mui
(Ak) = 1 (3)

The bma function for kth sensing, based on eqn. 3 and

assuming the user trust to be exponential [13] -

mui
(Ak = T ) = e−|D| (4)

mui
(Ak = −T ) = 0 (5)

mui
(Ak = {T,−T}) = 1 − mui

(Ak = T ) (6)

D, is the deviation in the user report. As the deviation D
decreases, our belief in ui increases and vice versa. The

uncertainty due to the noise level experienced by the user

is incorporated into mui
(Ak = {T,−T}). The deviation

incurred by user ui for any location cj

D = (1 − βk(cj))ζk(ui), ζk(ui) =
Y j

i,k − avg{Y j
i,k}

N
i=1

std{Y j
i,k}

N
i=1

(7)

avg stands for average and std stands for standard deviation.

Some users are more vulnerable to misreading due to their

instantaneous location. The deviation in evidence received

from a user in a cell is discounted based on location reliability

βk(cj) in eq. 7. For combination of subsequent bma evaluated

at each step k, the D-S rule of combination gives [12] -

mui
({A = T}) =

∑

T

Ar=A

∏k
r=1 mui

(Ar)

1 −
∑

T

Ar 6=A

∏k

r=1 mui
(Ar)

(8)

The confidence level of T for ui is Tk(ui) = mui
({A =

T}). For each k, we evaluate LRMI - βk(cj) based on

Algorithm 1 and eqn. 4 - 8 to capture malicious intention of

the secondary users. We compare our solution LRMI, with the

solution proposed in [4] (equation 7− 12 of [4]). We address

the approach in [4] as Malicious Detection (MD) in our paper.

Secondary Users Reports Combining

The existing method used for soft combining is Equal Gain

Combining (EGC) [2], which gives equal emphasis to all

the individual measurements. For N users in collaborative

spectrum sensing, with EGC rule at the fusion center

Y EGC
k =

N
∑

i=1

Y j
i,k.w(j), w(j) = 1∀j. (9)

For Y EGC
k > η, the primary user status is H1 otherwise H0

for primary user detection threshold η. For users with trust

values greater then ξ and applying the weight of each cell,

Y LRMI
k =

N
∑

i=1

Y j
i,k.w(j), w(j) =

βk(cj)
∑

j βk(cj)
, Tk(ui) > ξ. (10)

We need to normalize the location weights at each sensing slot

as there may not be any report originated from a cell(s). There

is no closed form solution for probability of primary user

detection for log-normal fading [2] and therefore, we evaluate

the system numerically. We analyze the performance of these



solutions in terms of Receiver Operating Characteristics (ROC)

for both malicious users detection and primary user detection.

ROC is the plot of probability of detection vs. probability of

false alarm rate.

V. PERFORMANCE EVALUATION

A. Simulation Settings

We consider the region of interest to be 1000 m away

from primary user. The region is 1000 m x 1000 m and is

divided into grid with L cells of equal area. We take average

velocity V = 20m/s, cells L = 9 and system observation

time K = 120s for all simulation results unless otherwise

mentioned. The secondary users send their location along with

the sensing report during each sensing slot. The noise power

is −110dBm and primary user transmit power is 200mW .

The sensing duration of all secondary users is 1ms [9] and

the users sense after every 1s. We choose users to sense

after every 1s, as FCC requires secondary users to evacuate

the spectrum in 2s when primary user becomes active. The

time-bandwidth product for our simulation is 5. The path-loss

exponent is selected randomly from 3 to 6 for each cell and

shadowing between 2 to 20 dB. For simulation purpose, we

assume the attack strength is ∆ ∼ N (−10dBm,−5dBm)
which fusion center is oblivious of. M is used to denote the

number of malicious users in the system. We evaluate the

system numerically. The malicious users detection threshold,

ξ is taken from 0 to 1 with step-size 0.05 to evaluate ROC

for malicious user(s) detection. pB = 0.5 and pI = 0.5 is the

probability that primary user is busy and idle respectively.

Since the sensing duration (∼ 1ms - 10ms) is so small,

we assume the users locations remain unchanged during

each sensing. We consider Smooth Random Mobility Model

[14], which considers the two stochastic processes, speed and

direction to have their values correlated to the previous one in

order to avoid unrealistic patterns. We assume the users never

pause. The acceleration of all secondary users are ±4m/s2.

The speed changes on an average after 25 seconds.

B. Simulation Results

a) Impact of secondary users: We vary number of sec-

ondary users in collaborative spectrum sensing. From Figure

2, it is obvious that as the total number of secondary users

increases (N = 5, 10, 20) keeping percentage of malicious

users constant (20% malicious nodes), the system performance

improves. For N = 10 , with decrease in number of malicious

nodes in the system (M = 4,M = 3,M = 2), LRMI

performance improves. MD gives a very high false alarm rate.

It ignores the information that honest users can be at poor

locations at times due to their mobility.

b) Impact of mobility: Due to mobility, the number of

cell changes per unit time for mobile users increases with the

speed for a fixed cell-area and cell-size [15], increasing user-

diversity in a cell. To see the effect of user diversity in a cell

with respect to ROC, we evaluate the performance of LRMI

with malicious and non-malicious data for calculating LR in

Figure 3. Note for MI, the data contains reports from malicious

users. LR-H is for evaluation of LR with honest users in the
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Fig. 3. Comparison of ROC curves for malicious user detection with LR
evaluated both with honest data (LR-H) and malicious data (LR-M) for N =

10.

system and LR-M is for the evaluation of LR with malicious

data in the system. We find that the performance in both LR-

H and LR-M cases differ only when the number of malicious

nodes in the system is as high as 40%.

We study the performance of LRMI with different average

velocity of secondary users. Figure 4 evaluates system perfor-

mance for V = 0m/s, V = 20m/s and V = 40m/s. As the

average velocity of users is increased, performance of LRMI

improves. MD performs better than LRMI at V = 0m/s but

for mobile secondary users, LRMI outperforms MD (Fig.4).

Performance of LRMI further increases when the average

speed of the mobile users is increased from 20m/s to 40m/s.
Thus mobility aids in malicious user detection.

c) Impact of number of sensings: We find that for a

fixed setting of N,L,M and V , as the K is increased, the

performance of malicious detection using LRMI increases. As

expected, the performance ceases to exist after certain K. For

N = 10,M = 2, V = 20m/s,L = 9, K = 180sec performs

better than K = 120sec and K = 60sec. For the same

settings with M = 3, with K = 120sec and K = 180sec,
there is almost no performance gain. Intuitively, as we take

more sensings, the convergence of βk(cj) ∀j converges to the

actual weight of each cell but makes no difference after certain

number of sensings. Figure 5 validates our argument.

d) Impact on primary user detection: We evaluate com-

plementary ROC for primary user detection for LRMI and



0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Probability of False alarm

P
ro

b
a

b
ili

ty
 o

f 
D

e
te

c
ti
o

n
V = 00 m/s, M = 2 MD

V = 00 m/s, M = 2 LRMI

V = 20 m/s, M = 2 LRMI

V = 40 m/s, M = 2 LRMI

V = 20 m/s, M = 3 LRMI

V = 40 m/s, M = 3 LRMI

Fig. 4. Impact of velocity - ROC for malicious user detection with secondary
users N = 10.

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of false alarm

P
ro

b
a

b
ili

ty
 o

f 
d

e
te

c
ti
o

n

K = 60 s, M = 2

K = 120 s, M = 2

K = 180 s, M = 2

K = 60 s, M = 3

K = 120 s, M = 3

K = 180s , M = 3

Fig. 5. Impact of LR sensings - ROC for malicious user detection. N = 10,
L = 9, V = 20 m/s

MD approach with different number of malicious users in the

system. We take η = −120 : 0.5 : −20 all in dBm and ξ = 0.5

for primary user ROC. The Figure 6 shows LRMI performs

better than MD with 10% and 20% malicious nodes in the

system. In Figure 7, keeping the percentage of malicious nodes

constant in the system, we decrease the number of secondary

users in the system. We observe, that MD performs poorly

with respect to LRMI in such cases.
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Fig. 6. Complementary ROC for primary user detection with N = 10, V =

20m/s.

VI. CONCLUSIONS & FUTURE WORK

We studied the performance of spectrum sensing under

different path-loss and fading conditions and came up with

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Probability of False Alarm

P
ro

b
a

b
ili

ty
 o

f 
M

is
s
e

d
 D

e
te

c
ti
o

n

 N = 5, M = 0

 N = 5, M = 1 MD

 N = 5, M = 1 LRMI

 N = 10, M = 0

 N = 10, M = 2 MD

 N = 10, M = 2 LRMI

Fig. 7. Complementary ROC for primary user detection with 20% malicious
nodes and V = 40m/s.

a solution fitting for collaborative spectrum sensing in mobile

CRNs with malicious user(s). The numerically simulated re-

sults showed that our approach (LRMI) greatly improves mali-

cious and primary user detection in mobile CRNs. Mobility is

also found to be an aiding factor in malicious users detection.

The simulation results show that as the average velocity of

the secondary users in the system increases, the ROC curves

for the system improves. An interesting extension of the work

will be to evaluate how malicious users can exploit mobility

to their advantage and avoid getting detected.
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