A Lazy Scheduling Scheme
for Improving Hypercube Performance*

Prasant Mohapatra, Chansu Yu, Chita R. Das
Dept. of Electrical and Computer Engineering
The Pennsylvania State University

Jong Kim
Dept. of C. S. E.
POSTECH

University Park, PA 16802

Abstract

Processor allocation and job scheduling are com-
plementary techniques to improve the performance of
multiprocessors. It has been observed that all the
hypercube allocation policies with the FCFS schedul-
ing show little performance difference. A greater im-
pact on the performance can be obtained by efficient
job scheduling. This paper presents an effort in that
direction by introducing a new scheduling algorithm
called lazy scheduling for hypercubes. The motivation
of this scheme is to eliminate the limitations of the
FCFS scheduling. This s done by maintaining sep-
arate queues for different job sizes and delaying the
allocation of a job if any other job(s) of the same di-
mension is(are) running in the system. Simulation
studies show that the hypercube performance is dra-
matically enhanced by using the lazy scheme as com-
pared to the FCFS scheduling. Comparison with a re-
cently proposed scheme called scan indicates that the
lazy scheme performs better than scan under a wide
range of workloads.

1 Introduction

Processor management in multiprocessors is a cru-
cial issue for improving the system performance. This
has become an active area of research for the hyper-
cube computer which has emerged as one of the most
popular architectures [1-3]. Hypercube topology is
suitable for a wide range of applications and can sup-
port multiple users. Judicious selection of processors
is essential in a multiuser environment for better uti-
lization of system resources. There are two basic ap-
proaches to improve processor management in a mul-
tiprocessor system. These are called job scheduling
and processor allocation.

Scheduling decides the job sequence for allocation.
Processor allocation is concerned with the partition-

*This research was supported in part by the National Science
Foundation under grant MIP-9104485.

P.O. Box 125, Pohang, Korea

ing and assignment of the required number of proces-
sors for incoming jobs. Structural regularity of the
hypercube makes it suitable for partitioning it into
independent subcubes. Each user or job is assigned
an appropriate subcube by the operating system. It is
known that optimal allocation in a dynamic environ-
ment is an NP-complete problem [8]. Several heuristic
algorithms reported in literature are buddy [4], mod-
ified buddy [5], gray code [6], free list [7], MSS [§],
tree collapsing [9], and PC-graph [10]. These schemes
differ from each other in terms of the subcube recog-
nition ability and/or time complexity.

Comparison of all the hypercube allocation poli-
cies shows that the performance improvement due to
better subcube recognition ability is not significant
[7,11]. This is mainly because of the first-come-first-
serve (FCFS) discipline used for job scheduling. In a
dynamic environment, FCFS scheduling may not ef-
ficiently utilize the system. There are two drawbacks
with the FCFS scheme. First, it is more likely that
an incoming job with a request for a large cube has
to wait until some of the existing jobs finish execu-
tion and relinquish the nodes to form a large cube.
All arriving jobs are queued during this waiting pe-
riod. There may be several jobs waiting in the queue
with smaller cube requests but they cannot be allo-
cated even though the system can accommodate such
jobs. This blocking property of the FCFS scheme re-
duces the system utilization. Second, with the FCFS
scheme, the scheduler tries to locate a subcube to al-
locate a job as soon as it arrives. This greedy prop-
erty creates more fragmentation and makes the allo-
cation of the succeeding jobs difficult. The subcube
recognition ability of an allocation policy is thus over-
shadowed by the limitations of the FCFS scheduling
policy.

It is therefore logical to focus attention on effi-
cient scheduling schemes to improve system perfor-
mance while keeping the allocation complexity min-
imal. There has been little attention paid towards

scheduling of jobs in a distributed system like hyper-
cube. The first effort in this direction was by Krueger
et al [11]. They propose a scheme called scan which
segregates the jobs and maintains a separate queue for
each possible cube dimension. The queues are served
similar to the c-scan used in disk scheduling. The
authors show that significant performance improve-
ment can be achieved by employing the scan policy.
However, it turns out that the scheme is suitable for a
workload environment where the job service time vari-
ability is minimal. For a more general workload, the
system fragmentation increases and the performance
gain diminishes.

In this paper, we propose a new strategy called
Lazy Scheduling for scheduling jobs in a hypercube.
The main idea is to temporarily delay the allocation
of a job if any other job(s) of the same dimension
is(are) running in the system. The jobs could wait for
existing subcubes rather than acquiring new subcubes
and possibly fragmenting the system. The scheduling
is not greedy and is thus named lazy . The system
maintains separate queues for different job sizes. We
thus eliminate the blocking problem associated with
the FCFS scheme. Waiting time in the queue is con-
trolled by a threshold value in order to avoid discrim-
ination against any job size. The proposed scheme
tries to improve throughput by providing more servers
to the queues that have more incoming jobs.

A simulation study is conducted to compare mainly
three types of processor scheduling schemes for hyper-
cubes. These are FCFS, scan, and lazy. Job allocation
is done using the buddy scheme for all the three disci-
plines. Another simple scheme called static partition-
ing is also simulated to demonstrate its effectiveness
for uniform system load. The performance parameters
analyzed here are average queueing delay and system
utilization. We show that the lazy scheme provides
at least equal performance as that of scan for uniform
residence time distribution. For all other workloads,
including the most probable residence time distribu-
tions like hyperexponential, the lazy scheme out per-
forms scan in all performance measures by 20% to
50%. Thus, the proposed scheduling scheme is suit-
able and adaptive for a variety of workloads.

The rest of the paper is organized as follows. In
Section 2, various hypercube allocation and schedul-
ing policies are summarized. The lazy allocation
scheme is described in Section 3. The simulation en-
vironment and the workloads are given in Section 4.
Section 5 is devoted to the performance evaluation
and comparisons of various policies. Conclusions are
drawn in Section 6.

2 Allocation and Scheduling Policies

2.1 Allocation Policies
Buddy

The buddy strategy is implemented is based on the
buddy scheme for storage allocation [4]. For an n-
cube, 2" allocation bits are used to keep track of the
availability of nodes. Let k be the required subcube
size for job I. The idea is to find the least integer m
such that all the bits in the region [m2¥, (m+1)2*% —1]
indicate the availability of nodes. If such a region is
found, then the nodes corresponding to that region are
allocated to job I, and the 2% bits are set to 1. When
a subcube is deallocated, all the bits in that region
are set to 0 to represent the availability of the nodes.
The time complexities of allocation and deallocation
are O(2") and O(2*), respectively. The allocation and
deallocation complexity can be reduced to O(n) by
using an efficient data structure [12].

Modified Buddy

Modified buddy scheme is similar to the buddy
strategy in maintaining 2" allocation bits. Here, the
least integer « is determined, 0 < o < 27~F+1 _ 1
such that a”~**! is free and it has a pth partner,
1<p<(n—k+1), a;}_k+1 which is also free. Detail
description of the scheme is given in [5]. This scheme
has better subcube recognition ability than buddy.
The complexities of allocation and deallocation are
O(n2") and O(2*%), respectively.
Gray Code

The gray code strategy proposed in [6] stores the
allocation bits using a binary reflected gray code
(BRGC). Here the least integer m is determined such
that all the (i mod 2") bits indicate availability of
nodes, where i € [m25~1 (m+2)25~1—1]. Thereafter,
the allocation and deallocation are the same as in the
buddy scheme. For complete recognition, (LHT}ZJ) gray
codes are needed. The complexity of the multiple GC
allocation is O(<Ln72j>2n) and that of deallocation is
O(2%).
Free List

The free list strategy proposed in [7] maintains
(n + 1) lists of available subcubes, with one list per
dimension. A k-cube is allocated to an incoming job
by searching the free list of dimension k. If the list
is empty, then a higher dimension subcube is decom-
posed and is allocated. Upon deallocation, the re-
leased subcube is merged with all possible adjacent
cubes to form the largest possible disjoint subcube(s).
The list is updated accordingly. This scheme has the
ability to recognize a subcube if it exists in the sys-
tem. The time complexity of allocation is O(n) and
that of deallocation is O(n2").

MSS

This strategy is based on the idea of forming a
maximal subset of subcubes (MSS), and is described
in detail in [8]. The MSS is a set of available disjoint
subcubes that has the property of being greater than
or equal to other sets of such subcubes. The main idea
is to maintain the greatest MSS after every allocation
and deallocation of a subcube. The allocation and
deallocation complexities are of the order of O(23")
and O(n2"), respectively.

Tree Collapsing

Tree collapsing strategy is introduced in [9]. This
involves successive collapsing of the binary tree repre-
sentation of a hypercube structure. The scheme gen-
erates its search space dynamically and has complete
subcube recognition ability. The complexities of al-
location and deallocation are O((Z)Q"_k) and O(2*),
respectively.
PC-graph

The main idea of this approach is to represent avail-
able processors in the system by means of a prime
cube (PC) graph [10]. Subcubes are allocated effi-
ciently by manipulating the PC-graph using linear
graph algorithms. This scheme has also complete sub-
cube recognition ability. The allocation complexity is

O(f—:) and that of deallocation is O(?;:—:)

2.2 Performance Comparison

It is observed from [7,11] that the performance vari-
ations due to different allocation policies are minimal.
None of the allocation policies utilizes more than half
of the system capacity irrespective of the input load
[11]. Fragmentation of the system overides the advan-
tages obtained from better subcube recognition abil-
ity. More sophisticated allocation policies, although
show little performance improvement, introduce over-
heads and higher time complexity. It is for this reason
we have adopted the buddy allocation scheme which
is simple and has low time complexity.

2.3 Scheduling Strategies

A scheduling strategy called scan is proposed in
[11]. The concept is similar to the disk c-scan policy.
The algorithm maintains (n + 1) separate queues, one
for each possible cube dimension. A new job joins the
end of a queue corresponding to its subcube dimen-
sion. All jobs of a given dimension are allocated before
the scheduler move on to the jobs of next dimension.
It is shown that significant performance improvement
can be achieved with this scheme compared to the
most sophisticated allocation policies.

The problems associated with the scan policy are
the following. It tries to reduce fragmentation by al-

locating equal-sized jobs. The scheme performs well
when the residence time of the jobs has little varia-
tion. In this environment, the system at any instant
would have jobs of almost the same size and thus frag-
mentation is reduced. When the residence times of all
the jobs are not the same, the allocations and deal-
locations eventually create a mixture of jobs from all
the queues in the system and lead to fragmentation.
The performance of the scan scheme is therefore de-
pendent on the workload. The study in [11] is con-
ducted under the assumption of exponential job resi-
dence time distribution with a mean of one time unit.
Practically, the residence time distribution resembles
close to hyperexponential distribution [13]. It will be
shown that the scan algorithm does not performs well
in this environment. Furthermore, under certain cir-
cumstances scan treats jobs unfairly. This happens if
there are some queues with large number of jobs and
some queues with a few jobs. This is possible with
non-uniform arrival pattern. There could be a situa-
tion where jobs in a short queue have to wait till all
the jobs in the longer queues are processed. In such
cases, a job arriving early to a short queue has to wait
even longer than the jobs that arrive much later in the
longer queues.

3 The Lazy Scheduling Scheme

In this section, we first discuss a simple schedul-
ing algorithm based on static partitioning of the sys-
tem. Static partitioning scheme is shown to be effi-
cient only for uniform workloads. Next, the concept
of Lazy Scheduling is discussed. We conclude the sec-
tion by analyzing the time complexity of the proposed
scheme.

3.1 Static Partitioning Scheme

Static partitioning scheme divides the n-cube sys-
tem into one (n — 1)-cube, one (n — 2)-cube,...,one
1-cube, and two 0-cubes. Let S; denote the partition
which accommodates jobs requesting i-subcubes, for
0 < i< n-—1. Corresponding to each S;, there is a
queue ;. Thus there are n queues in an n-cube sys-
tem. An incoming job requesting an i-cube joins @;.
Each queue is scheduled on a FCFS basis. The steps

for subcube request and release are given below.
Static Partitioning Algorithm

Static_Request ()
1. If @Q is empty then allocate Sy to Ij.
2. Else enqueue I to Q.
Static_Release (Ij)
1. If Q& 1s not empty then allocate the header of

Qk to Sk

3.2 Lazy Scheduling Scheme

Lazy scheduling is based on two key concepts.
First, the jobs requiring small subcubes are not
blocked behind the large jobs. The scheduler main-
tains a separate queue for each dimension. This avoids
the blockings incurred in the FCFS scheduling. Sec-
ond, a job tends to wait for an occupied subcube of
the same size instead of using a new cube and possibly
decomposing a larger subcube. The greedy character-
istic of the FCFS policy is thus subdued. Both these
issues help in reducing fragmentation. If all the jobs
of a dimension wait for a single subcube executing in
the system, then eventually the scheduling will resem-
ble the static partitioning scheme. In order to avoid
this, we introduce a variable threshold length for each
queue. A queue whose length exceeds the threshold
value, tries to find another subcube using an alloca-
tion policy. This provides more servers for the queues
that have more incoming jobs. The threshold value is
determined dynamically as explained later.

The lazy scheduling scheme is illustrated in Figure
1. There are (n + 1) queues for an n-cube system
represented as @Qi’s, for 0 < k < n (n = 4 in Fig-
ure 1). Each queue has a variable threshold length
denoted as Ng, for 0 < k < n. Ny is initially set to
zero. Ny 1s incremented with a k-cube allocation and
is decremented with a k-cube deallocation. In other
words, N denotes the number of subcubes of a par-
ticular size being occupied at any instant of time. A
new job is first enqueued according to its dimension.
If the number of jobs waiting, |Qk|, is more than Ny,
then the scheduler tries to allocate the job at the head
of the queue using an allocation algorithm (we have
adopted the buddy scheme although any other scheme
could be used). The job is allocated to the system if
a suitable subcube is found. Each queue is scheduled
on a FCFS basis.

Fig. 1. Queue management in a 4-cube
The determination of the threshold value, Ny, is
based on the concept that for every subcube execut-
ing in the system, there can be another job waiting

to acquire it. For example, if there are two 1-cubes
allocated to the system, N; is set to 2. Then, the
next two jobs requiring l-cubes are enqueued. Thus
the length of the queue, |@Q1|, becomes 2. The jobs
waiting in the queue are guaranteed to receive service
after the currently executing 1l-cube jobs. Any ad-
ditional request for a l-cube makes the length, |Q1],
more than the threshold, N;. Thus, one more 1-cube
is searched for allocation. The policy of the scheduler
is to create more servers for a queue if the number of
requests for the corresponding cube is high. Although
the scheduler tries to limit the number of jobs waiting
for the existing subcubes, there may be more jobs in
the queue at high load.

Some jobs may suffer indefinite postponement un-
der certain distribution of workload. We modify our
algorithm to eliminate the possibility of indefinite
postponement by using a threshold value for maxi-
mum queueing delay that a job can tolerate. When-
ever the waiting time of a job reaches this threshold
value, it gets priority over all other jobs. No jobs are
allocated until the job whose waiting time has reached
the threshold value is allocated.

The threshold for the queueing delay could be pre-
defined or computed dynamically. Predefined thresh-
old value is useful in imposing deadline for job com-
pletion. A dynamic threshold for the queueing delay
is derived based on the following heuristic. Let d; be
the average queueing delay for a job at time ¢. During
this waiting period a job ‘sees’ the arrival of (d; - A)
jobs to the system, where A denote the arrival rate.
We consider that the maximum delay that a job can
tolerate is the processing of these (d; - A) jobs. This
time is equal to (d? - A) and is used as the thresh-
old value. The average queueing delay and the arrival
rate are monitored by the scheduler. The scheduler
updates the threshold value periodically or every time
a job is allocated to the system.

The formal algorithm for the lazy scheduling is
given below. Buddy_Request and Buddy_Release are
procedures from the buddy allocation algorithm pre-
sented later. The flag stop_alloc is used to indicate
that the waiting time of a job has reached the thresh-
old value.

Lazy Scheduling Algorithm

Lazy_Request (1)

1. Enqueue I; to Q.

2. If (|Qx] > Ny) and (stop_alloc is FALSE)
then call Buddy_Request(header of Qy).

3. If succeeds, increment Ny.
Lazy_Release (I)

1. Determine the oldest request. If the waiting

time exceeds the threshold then set stop_alloc flag to
TRUE and save identity of queue (Q;).
2. If (|Qx| > 0) and (stop_alloc is FALSE) then
allocate the released subsystem to the header of Q.
3. If stop_alloc is TRUE then call Buddy_Request
(header of @;). If success then set stop_alloc to
FALSE.

4. Call Buddy_Release(1}).

An incoming job is first handled by the scheduler
which manages the queues and imposes the algorith-
mic procedure. Jobs are allocated to the system using
the underlying allocation policy.

We adopt the buddy strategy using an efficient data
structure as proposed in [12]. This structure main-
tains a separate list, F;, for each cube size i. Each list
maintains the available subcubes for the correspond-
ing size. Initially all the lists are empty except the
list F,, which contains the n-cube. The allocation and
deallocation complexities are of O(n). The algorithm
is presented below. Ij represents a job that requires
a k-cube.

Buddy Strategy

Buddy_Request (Ij)

1. If F} is not empty, allocate a subcube in F}, to
Iy

2. Otherwise, search Fi41, Fr4a, ...
until a free subcube is found.

, F, in order

3. If found, decompose it using the buddy rule until
a k-cube is obtained and allocate it to I. Update the
corresponding lists after decomposition.

4. Else enqueue the job to the corresponding

queue.
Buddy_Release (Ij)

1. Put the released subcube into the list F}.

2. If F} contains the buddy of I}, merge them and
put in the list Fjyq.

3. Repeat step 2 until the corresponding buddy is
not available.

3.3 Complexity Analysis

For job allocation with the lazy scheduling, when
a new job arrives, the queue length is compared with
the threshold value and the stop_alloc flag is checked.
These operations take constant time. Thus, the allo-
cation complexity is the same as the buddy allocation
which is of O(n). Determination of the oldest job is
of O(1) by keeping track of the waiting time of the
earliest generated job. Deallocation with the buddy
scheme takes O(n) time. Thus the time complexity
of the release process of lazy scheduling is of O(n) for
an n-cube.

4 Simulation Environment

A simulation study is conducted to evaluate the
performance of the proposed strategy and for com-
parison with other allocation and scheduling policies.
The other schemes simulated are FCFS, scan, and
static partitioning. Buddy allocation policy is em-
ployed for all the scheduling schemes. The job arrival
rate (A) is based on the system capacity. This is done
to avoid saturation by ensuring that the arrival rate
to the system does not exceeds the service rate. The
observation interval T is 10000 time units which is
sufficient to obtain the steady state parameters. The
simulation results are obtained by taking average of
1000 iterations.

4.1 Workload

The workload is characterized by the job interar-
rival time distribution, distribution of the job size
(subcube size), and distribution of the job service de-
mands. Job arrival pattern is assumed to follow Pois-
son distribution with a rate A. The job size and the
total service demand could be either independent or
dependent (proportionally related) of each other.

Independent distribution means that a large job
(large subcube) has the same distribution of total ser-
vice demand as that of a small job. The residence time
of a job Iy, is computed as xj /2%, where z, is the re-
quired service time of job I, and 2* is the number
of processors needed for the k-cube job. =z is de-
termined from the total service demand distribution.
The mean of the total service demand is computed by
multiplying the mean job size with the mean residence
time.

With dependent distribution, a large job has more
total service demand than a small job. In this case,
the job size is first obtained using the given distribu-
tion. The residence times of the jobs are obtained
from a given distribution and the mean residence
time, irrespective of the job size.

The distribution of the job size is assumed to be

uniform or normal. In a 10-cube system, for exam-
1

. E
with uniform distribution. For normal distribution,

ple, probability that a request is i-cube (p;) is

the probabilities for a 10-cube system are, pg = pg =
0.017, p1 = ps = 0.044, ps = p7 = 0.093, p3 = ps =
0.152, ps = ps = 0.194. These numbers are used for
simulating normal distribution in our study.

The total service demand follows uniform or bi-
modal hyperexponential distribution. Bimodal hy-
perexponential distribution is considered as the most
probable distribution for processor service time [13].
Mean residence time is assumed to be 5 time units,
and the mean job size is assumed (system size/2). For

hyperexponential distribution, « is taken as 0.95, and
the coeflicient of variation (Cy) for the residence time
is set to 4.0.

4.2 Performance Parameters

The following parameters are measured during sim-
ulation of various n-cubes for T time units.
G : Number of jobs generated during the observation
time T.
C : Number of jobs completed during the observation
time T.
A : Number of jobs allocated during the observation
time T.
R : Total queueing delay of allocated jobs.
S : Sum of total service demand of generated jobs.
The performance parameters obtained from the
simulator are utilization (U) and mean queueing de-
lay (M). Mean queueing delay, M, is equal to R/A.
The actual job request rate is measured by S/(2"x
T). The system utilization, U, is computed from
E;»A:l?l["ti/?"T, where ¢; is the residence time of job
1.

5 Results and Discussion

Figure 2 shows the variation of queueing delay with
respect to input load for a 10-cube system. The job
size is uniformly distributed in Figure 2(a), and Fig-
ure 2(b) shows the variations for a normal job size
distribution. We compare static, FCFS, scan, and
lazy schemes. The delay saturates early for the sys-
tem employing the FCFS scheduling strategy in both
cases. Static partitioning performs very well in case
of uniform job size distribution. The system utiliza-
tion is high and there is almost no fragmentation in
static partitioning with uniform distribution. But the
performance improvement is not consistent and dete-
riorates for other distributions. This can be inferred
from Figure 2(b). Scan and lazy scheduling show bet-
ter performance than the FCFS strategy for both uni-
form and normal distributions. Figures 2(a) and 2(b)
show that the average queueing delay with the lazy
scheduling is less than that of the scan. Moreover, the
lazy scheduling performs close to the static scheme for
the uniform job size distribution (Figure 2(a)). This
is because by delaying the allocation of a job for which
a cube is already busy, the lazy scheme tries to divide
the system uniformly for all cube sizes.

It was mentioned in Section 2 that the scan pol-
icy is workload dependent. It does not perform well
when the job residence time exhibits wide variation.
The difference in the delay becomes more prominent
when the job residence time is hyperexponentially dis-
tributed. This is demonstrated in Figure 3. The job

size is uniformly distributed in Figure 3(a), and is nor-
mally distributed in Figure 3(b). The deterioration
with the scan scheme is due to the high variability of
residence time. Allocation of equal-sized jobs is not
maintained in these situations. On the other hand,
the lazy scheme performs well under all workloads,
particularly with hyperexponential distribution.

100 Delay (time unit)

80

1 — - Static Scheme
---Or-- FCFS Scheme
60 q ..o - Scan Scheme
| —®— Lazy Scheme

X
40 1 i
20
oA
00 02 04 06 08 jobarival rate

(&) Uniform job size/Uniform residence time
(dependent distribution, 10-cube system)

100 Delay (time unit) A’:
¥
/)
80 L
1 — 2=~ Static Scheme I’ :
---0r-- FCFS Scheme Il
60 7 xS Scheme |
] —®— Lazy Scheme / x

0.0 0.2 04 0.6

0.8 job arrival rate

(b) Normal job size/Uniform residence time
(dependent distribution, 10-cube system)

Fig. 2. Average queueing delay for a 10-cube

Figure 4 shows the comparison of system utiliza-
tion at three different input loads. The job size is
uniformly distributed in Figure 4(a) and normally dis-
tributed in Figure 4(b). The main observation from
this graphs is that the utilization of the static par-
titioning scheme is very low compared to the other
schemes. Because of fixed partitioning, a large part of
the system may be empty while there are a number of
jobs in the queue for a different partition. This leads
to the poor utilization in static scheme. Thus, lower
queueing delay does not necessarily means better sys-

tem utilization. At low loads the system utilization of
buddy, scan, and lazy schemes are almost the same.
Lazy scheduling can provide better system utilization
than others at higher loads.

250 Delay (time unit) x

200 1 !

— —A—- Static Scheme
--Or-- FCFS Scheme

""" X+ Scan Scheme

1507 o Lazy Scheme ;*

1001 H

0
00 02 04 06 08 jobarrival rate
(@) Uniform job size/Hyperexp.residence time

(dependent distribution, 10-cube system)

250 Delay (time unit)
200 '
— —A— - Static Scheme ;
--o-- FCFSScheme X
150 '

1001

0.0 0.2 04 0.6 0.8 job arrival rate

(b) Normal job size/Hyperexp.residence time
(dependent distribution, 10-cube system)

Fig. 3. Average queueing delay for a 10-cube

The average delay with respect to the observation
time is shown in Figure 5. Figure 5(a) is for mod-
erate load (A = 0.5), and average queueing delay for
heavy load (A = 0.85) is shown in Figure 5(b). The
graphs indicate that under moderate load, the aver-
age queueing delay with the FCFS scheme is very high
compared to the other schemes. Average queueing de-
lay with the scan scheduling increases monotonically
with time under heavy load, and the delay becomes
closer to that of the FCFS scheme. The performance
behavior with the static scheme is good because of the
uniform job size distribution. Average queueing delay
does not increases considerably with time in case of
the lazy scheduling. It stays much lower than that of

the FCFS and scan scheduling schemes.

100 T Gitilization (%)

0O Static Scheme
601 B FCFSScheme
[l Scan Scheme
{1 M Lazy Scheme

40

0
02 05
(a) Uniform job size/Hyperexp.residence time
(dependent distribution, 10-cube system)

08 jobarival rate

100 T Gtilization (%)

O Static Scheme
60 - W FCFSScheme
Il Scan Scheme
] M Lazy Scheme

40

) _j
0-
0.2 05

(b) Normal job size/Hyperexp.residence time
(dependent distribution, 10-cube system)

job arrival rate

0.8

Fig. 4. System utilization vs input load of a 10-cube

600 Delay (time unit)
500
— A - -
w0 Static Scheme
©-- FCFSScheme ..o
i Scan Scheme .-l
.0
300 —®— Lazy Scheme xn-—
/n‘
fu'
200 o
¢’n’
1004 *
e X
q
=R —0 %N _9 99
0 T T T w w*

observation
0 2000 4000 6000 8000 10000 time (time ui

(a) Uniform job size/Hyperexp.residence time (dependent
distribution, 10-cube system, job arrival rate of 0.5)

600 Delay (time unit)
4 g---0-- a
e
500 1 o--9°" X
‘ X
, K
wl
] X
300 e
x

J ---O-- FCFS Scheme
2004 4 T X Scan Scheme

m observation

0 2000 4000 6000 8000 10000 time (time w

(b) Uniform job size/Hyperexp.residence time (dependent
distribution, 10-cube system, job arrival rate of 0.85)

1001

0

Fig. 5. Delay variation with the observation time

We have done extensive simulations for both de-
pendent and independent workloads. The trends in
various performance measures are similar for the two
workloads.

6 Concluding Remarks

We have proposed a new scheduling scheme called
lazy scheduling for assigning jobs in hypercube com-
puters. This scheduling along with the buddy allo-
cation scheme is used to process jobs in a multiuser
environment. Prior research has focussed more on
efficient allocation policies for hypercubes although
they provide only incremental performance gain due
to the limitations with the FCFS scheduling. The
lazy scheme is proposed as an alternative to the FCFS
scheduling to improve the hypercube performance.

It is shown that significant improvement in system
utilization and delay can be achieved with the lazy
scheduling compared to the FCFS discipline. Our
scheme is compared with another technique, called
scan for various workload distributions. It is observed
that both scan and lazy schemes provide compara-
ble performance under uniform workload distribution.
However, for hyperexponential residence time distri-
bution and varied job sizes, the lazy scheme out per-
forms the scan method. In summary, the proposed
method is adaptable to all workloads where as scan is
workload dependent.

The study argues in favor of exploiting various
scheduling schemes as opposed to efficient but com-
plex allocation policies. We are currently investigat-
ing the performance tradeoffs due to scheduling and
allocation policies in other multiprocessors.

References

[1] J. P. Hayes, T. N. Mudge, et al, “Architecture of
a Hypercube Supercomputer,” Int. Conf. on Parallel
Processing, pp. 653-660, Aug. 1986.

[2] L. N. Bhuyan and D. P. Agrawal, “Generalized
Hypercube and Hyperbus Structures for a Computer
Network,” IEEE Trans. on Computers, pp. 323-333,
Apr. 1984.

[3] Y. Saad and M. H. Schultz, “Topological Proper-
ties of Hypercube,” IEEE Trans. on Computers, vol.
37, pp. 867-872, July 1988.

[4] K. C. Knowlton, “A Fast Storage Allocator,” Com-
munications of ACM, vol.8, pp. 623-625, Oct. 1965.
[5] A. Al-Dhelaan and B. Bose, “A New Strategy for
Processor Allocation in an N-Cube Multiprocessor,”
Int. Phoenix Conf. on Computers and Communica-
tions, pp. 114-118, Mar. 1989.

[6] M. S. Chen and K. G. Shin, “Processor Alloca-
tion in an N-Cube Multiprocessor Using Gray Codes,”
IEEE Trans. on Computers, pp. 1396-1407, Dec.
1987.

[7] J. Kim, C. R. Das, and W. Lin, “A Top-Down Pro-
cessor Allocation Scheme for Hypercube Computers,”
IEEE Trans. on Parallel & Distributed Systems, pp.
20-30, Jan. 1991.

[8] S. Dutt and J. P. Hayes, “Subcube Allocation in
Hypercube Computers,” IEEE Trans. on Computers,
pp- 341-352, Mar. 1991.

[9] P. J. Chuang and N. F. Tzeng, “Dynamic Proces-
sor Allocation in Hypercube Computers,” Int. Symp.
on Computer Architecture, pp. 40-49, May, 1990.
[10] H. Wang and Q. Yang, “Prime Cube Graph Ap-
proach for Processor Allocation in Hypercube Multi-
processors,” Int. Conf. on Parallel Processing, pp.
25-32, Aug. 1991.

[11] P. Krueger, T. H. Lai, and V. A. Radiya, “Pro-
cessor Allocation vs. Job Scheduling on Hypercube
Computers,” Int. Conf. on Distributed Computing
Systems, pp. 394-401, 1991.

[12] D. E. Knuth, The Art of Computer Programming,
Volume 1, Fundamental Algorithms, Addison-Wesley,
1973.

[13] K. S. Trivedi, Probability and Statistics with Reli-
ability, Queuwing, and Computer Science Applications,
Prentice-Hall Inc., 1982.

