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Abstract—In a multi-tenant data center environment, the cur-
rent paradigm for route control customization involves a labor-
intensive ticketing process, in which tenants submit route control
requests to the landlord. This results in a tight-coupling between
tenants and landlord, extensive human resource deployment, and
long ticket resolution time.

We propose Routing-as-a-Service (RaaS), a framework for
tenant-directed route control in data centers. We show that
RaaS-based implementation provides a route control platform
for multiple tenants to perform route control independently with
little administrative involvement, and for the landlord to set
the overall network policies. RaaS-based solutions can run on
commercial off-the-shelf (COTS) hardware and leverage existing
technologies so it can be implemented in existing networks
without major infrastructural overhaul. We present the design of
RaaS, introduce its components, and evaluate a prototype based
on RaaS.

I. INTRODUCTION

Data center is a key infrastructure for on-line service

providers (OSP) to provide always-on and responsive services

to end-users. Typically consist of 1,000’s to 100,000’s of

servers, data centers are designed to handle tremendous com-

putations, large storage, and quick service delivery. However,

the computational resources in a data center are not used

monolithically. Often the resources are multiplexed between

different tenants – clients of the data center resource – so

they can simultaneously perform computations, store data, and

provide services to end-users.

In this paper we focus on routing as a service to ten-

ants. Recent cloud computing architectures such as Amazon’s

EC2 [1] show promising direction in tenant-directed control,

allowing control of IP-to-Virtual Machine binding without

administrative involvement. Extending this notion, routing-

as-a-service to tenant promotes the idea that tenants can

programmatically determine where requests for their services

go. For example, instead of a single server serving user traffic,

a tenant might want the traffic to her service load-balanced

across 10 machines. Or, the tenant would like to reserve

subsets of servers as standby in case the primary servers fail.

The traditional paradigm for achieving such per-tenant routing

customization involves a ticketing process, which we outline

below.

Fig. 1: Ticketing process.

Figure 1 shows a typical ticketing process for tenants to

request routing customization. A tenant first submits a request

for routing customization (a “ticket”) to a ticket distribution

system, upon which a landlord (i.e., data center resource

owner and/or manager, in this case a network administrator) is

assigned to the ticket. After rounds of clarification between the

tenant and landlord, the landlord sets up routing policies based

on his understanding. Further clarifications might be required

if the installed routing policy is unsatisfactory to the tenant.

Finally, when both sides are content with the routing policy,

the ticket is considered resolved and the routing customization

request is considered fulfilled.

The following problems are common with this paradigm.

Labor intensive process: Many of the steps in Figure 1 involve

manual intervention, which burdens both the tenants and

landlord, but more so the landlord because it takes away

time the landlord can spend improving and maintaining the

network. While tolerable when the request volume is small,

such a system is unsustainable as the volume and variety of

customization increases.

Tenants lacking automated control: The traditional paradigm

takes away tenants’ ability to automatically control routing to

their services. Therefore, tenants often have to submit routing

policies that satisfy a certain class of scenarios (e.g. the aver-

age traffic scenario, worst-case scenario). In addition, reacting

fast to changes in this paradigm means more tickets inundated
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to the ticket distribution system, causing overwhelming work

for the landlord.

Long ticket resolution time: As a byproduct of having a labor-

intensive process, the landlord might not resolve the tickets

quickly. In the simple case that tenants and the landlord

communicate via e-mail, this can take days. In the complicated

case where an in-person meeting is required for each round of

discussion, this can take up to weeks. Such a delay might not

be acceptable if tenants desire a quick response to changes in

the network environment.

This paper proposes the Routing-as-a-Service (RaaS) frame-

work. RaaS promotes automated route control to tenants

while retaining the landlord’s authority in setting the network

policy. The RaaS architecture consists of MultiSpeakers,

Controllers, and Tenant Applications, with the former two

under the landlord’s control and the latter maintained by the

tenants. The MultiSpeakers and Controllers together expose

application programming interfaces (APIs) to tenants to per-

form automated route control, while the landlord can set

the policy at the Controllers. Tenants’ applications execute

customized route control algorithms, allowing for customized

and quick routing changes.

Our contributions are threefold:

• We propose a framework that provides a programmatic

environment for tenants to use routing as a service,

while reducing landlord’s management effort, resulting

in reduced personnel cost (Section II).

• We build a prototype of RaaS (described in Section III)

based on commercial-off-the-shelf (COTS) components

and existing protocols, demonstrating that RaaS is im-

mediately applicable to data center networks.

• We conduct detailed performance evaluations of RaaS

in terms of its processing delay, memory consumption,

network overhead, and success rate in serving requests,

showing that it does not cause overwhelming burden on

the network (Section IV).

The paper proceeds with a system overview in Section II

and the implementation in Section III. An implementation

based on RaaS, along with a theoretical model for the service

availability, are evaluated in Section IV. Related works are

discussed in Section V and we conclude the paper in Section

VI.

II. RAAS OVERVIEW

This section gives a high-level overview of RaaS, and

introduces the components that enable tenant-directed route

control. An overview of the system is shown in Figure 2.

A. Design Considerations

In designing the RaaS framework, we task ourselves to

come up with a framework that not only allows tenants to

customize their routing, but are able to do it safely. This

means tenants can control their routing without unintentionally

changing the routing policies of other tenants, or even worse,

the overall network policies. In addition, components in the

Fig. 2: RaaS overview with a single Controller set-up.

RaaS framework should not require major infrastructural over-

haul, and should be flexible enough to be assembled in various

configurations (e.g., 1+1 redundancy). We tackle these issues

by first leveraging current knowledge about the capabilities

of existing routing protocols [2]–[4]. Then, we design critical

components to be lightweight and stateless when possible, so

they can be deployed in various configurations. In the end,

RaaS is designed to be a modular framework that is capable

of giving multiple tenants routing customizations without

burdening the existing network infrastructure.

B. MultiSpeaker

MultiSpeakers actively maintain sessions to the router, so it

could relay the requests approved by the Controllers. To ensure

no fundamental changes are made to routers, MultiSpeak-

ers communicate with routers over well-known protocols. In

RaaS, MultiSpeakers use Border Gateway Protocol (BGP)

[5] to install tenants’ routing policies. MultiSpeakers provide

an API for the Controllers to relay approved tenant routing

requests to the router.

Deployment of redundant MultiSpeakers is easy in RaaS,

since no communication occurs between MultiSpeakers – all

the coordinations are orchestrated by the Controllers. Also,

MultiSpeakers do not maintain states that would otherwise

require a coherence protocol (e.g., BGP messages sent by the

MultiSpeakers). This enables MultiSpeakers to be lightweight

and stateless agents that simply act as relays for tenants to

install their routing policy.

It may seem counterintuitive to use BGP, an inter-domain

solution, for routing control within a single administrative

domain. Indeed, Interior Gateway Protocols (IGPs) such as

Routing Information Protocol (RIP) [6], Open Shortest Path

First (OSPF) [7], and Immediate System to Immediate System

(IS-IS) [8], [9] are IGPs that are well established and enjoy

a wide adoption. However, there are several good reasons for

using BGP, and they are outlined below.

Simple State Machine: Compared to protocols such as OSPF,

the state machine necessary to establish a functional session

is simpler in BGP. A simpler state machine not only eases

code verification to minimize bugs, it also makes additional
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augmentation easier, as explored in Section III-D.

Flexible placement of MultiSpeakers: While a simple state

machine such as RIP is desirable, flexible placement of

MultiSpeakers is a desirable trait that RIP cannot satisfy. In

RIP, each router exchanging RIP messages must be directly

connected. This limits the placement of MultiSpeakers to

machines that are one hop away from routers, thus constraining

the flexibility of MultiSpeaker placement. BGP has a mode

(”Multihop eBGP”) that enables two BGP speakers to ex-

change routing messages even if they are not directly con-

nected. This makes it possible for MultiSpeakers to exchange

messages to core routers, without having to connect to them

directly.

Easy Resource Management: In RaaS, resource management

equates to manipulating routing to specific physical resources

(to be discussed in more detail in Section II-D). If the routing

is manipulated by IGPs such as OSPF, it could affect the

data plane and cause route instability for protocols above IGP

(e.g. BGP). For example, consider other BGP-learned routes

that are also in the routers. If a tenant distributes the traffic

over machines in several subnets, IGP would need to change

link metrics to ensure the path metric to all servers are equal.

Changing the link metric, however, can affect the egress point

of BGP-learned routes, causing a ripple-effect to other ASes.

Thus, using BGP avoids unintentional changes to the data

plane while keeping resource mapping manipulation possible.

C. Controller

Before routing policies are received by MultiSpeakers, they

must first pass through the Controller, as shown in Figure

2. The Controller provides an API for tenants to submit

routing requests per their routing policy. By providing an API

to tenants, RaaS lessens the need to dedicate large amount

of landlords’s time when tenants need to change routing to

their services, since such a task can now be assigned to the

Controller.

To prevent tenants from making erroneous routing requests,

however, the landlord and tenants need to agree on the set

of resources ℜ (i.e., servers) the tenants can host the service.

Upon agreeing on ℜ, the landlord can implement policies that

reject routing requests for resources not in ℜ. The admission

policy can be much more complicated, involving dynamic

conditions of the network, and it will be up to the landlord

to set up the admission policy. Because of the Controller, the

landlord only needs to understand the constraint on tenants’

routing policies, and can leave the actual routing policy

implementation to the tenants This reduces the amount of

manual labor the landlord has to invest in allowing tenant to

customize their routing.

In addition to providing an API and policy enforcement,

the Controller also coordinates MultiSpeakers. When the Con-

troller accepts tenant’s routing requests, it records the requests

and to which MultiSpeaker it is destined before forwarding the

routing request. This helps the Controller check if duplicate

routing requests have been received, a likely indication of

tenant application error, and inform the tenant application of

such a duplication. Storing the requests also allows Multi-

Speakers to be bootstrapped upon restart; this enables the

Controller to be the state memory for MultiSpeakers, making

the MultiSpeakers lightweight and stateless.

D. Tenant Application

Tenant application is the component that allows tenants to

implement their routing policies. Through the APIs provided

by the Controller, tenants can choose how to control traffic

to their services. In order for tenants to control routing to

their services, RaaS requires each tenant to be assigned unique

tenant IP addresses (TIAs). These addresses will then be

bound to the services tenants develop, and used for subsequent

routing requests.

To control routing to their services, tenants issue API calls

to the Controller to change the binding between TIAs and the

set of resources available to the tenant. Instead of network

administrators manually configuring routing policies, tenants

can develop programs to automatically change routing to their

resources (i.e., changing the TIA-to-resource binding). Tenants

can now develop complex programs to install policies without

landlord intervention.

With the use of TIA and tenant applications, independent

and safe route control is possible. Since TIAs are unique to

each tenant, other tenant applications cannot change routing

service that are not their own. For each routing request, the

Controller checks the owner of a tenant application issuing the

call through a security token. If the TIA is not listed under

the requesting tenant’s control, the request will be rejected.

Also, since tenant applications are separated, each tenant can

control routing to their resources independent of other tenants.

However, the actual resources being routed to are shared

amongst tenants. For example, if ℜAlice = resources for Alice

and ℜBob = resources for Bob, |ℜAlice

⋂

ℜBob| could be

greater than 0. This separation of virtual resources (i.e., the

TIAs) and physical resources (i.e., servers) enables resource

multiplexing amongst different tenants while providing safe

route control amongst tenants.

E. TIA-Resource Mapping and BGP

So far the discussion presents tenant routing in the con-

text of changing the TIA-resource mapping, but how is the

mapping installed and changed using BGP? In BGP, routing

changes are announced via the BGP Update message type,

in which a prefix originator (i.e., the entity who owns the

IP prefix) announces or withdraws a route to the prefix. In a

route announcement, the BGP Update message contains the

destination IP prefix and next hop address, where the next

hop address indicates the next node the packets should use to

reach the IP prefix. In a route withdrawal, the BGP update

message simply contains the IP prefix so the routing entry

corresponding to the prefix is removed from routers.

In the context of TIA-resource mapping, the TIA address is

represented by the IP prefix, and the resource is represented

by the next hop address. Thus, to install a TIA-resource

mapping, a BGP Update message to the router should be an
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Fig. 3: MultiSpeaker and Controller components and interac-

tions between them.

announcement, with the TIA address being the IP prefix and

the IP address of the resource being the next hop address. To

change the TIA-resource mapping, one BGP Update message

to the router should be a route withdrawal to delete the

existing mapping, followed by a second BGP Update message

announcing the new TIA-resource mapping. Alternatively,

sending just a BGP UPDATE message with the new next hop

address will achieve the same effect, as the router will treat it

as an implicit withdraw.

III. SYSTEM DESIGN

This section presents the implementation of the Multi-

Speaker and Controller. Tenant application will be briefly men-

tioned, since the actual implementation is tenant-dependent. In

addition, enhancements to the MultiSpeaker is possible and is

presented here. The MultiSpeaker and Controller components

and their overall interactions are shown in Figure 3.

A. Tenant Application

When tenants want to customize their routing policy to the

resources (ℜ) they have, their applications can issue calls to

the Controller’s API, which is shown in Table I. For portions of

the policy that involve changing the TIA-to-resources mapping

(i.e., changing which resources service user requests), the

applications can issue calls to the Controller’s API. As men-

tioned in Section II-E, changing the TIA-to-resource mapping

equates to changing the next hop of the destination. So, if

a tenant Alice was given ℜ = {server1, server2, server4},
to initialize her service to server1, she sets FirstSer-

viceRoute = {destination: TIAAlice, next hop: IPmachine1},
and calls AddRoute(FirstServiceRoute, TokenAlice). To

Controller Interface

Method Name Purpose

bool AddRoute(Route r, Token t) Adds specified route to router

bool RemoveRoute(Route r, Token t) Removes specified route to router

Status GetRouteStatus(Route r, Token t) Check status of route

TABLE I: Controller interface to tenants. Route = resource

routing info, token = tenant identity.

switch the service-to-resource mapping to server4, Al-

ice would create a new route ReplaceServiceRoute =

{destination: TIAAlice, next hop: IPmachine4}, and call

WithdrawRoute(FirstServiceRoute, TokenAlice) followed by

AddRoute(ReplaceServiceRoute, TokenAlice). Additional ca-

pabilities such as service fault recovery can also be imple-

mented using these primitives.

B. Controller

Controller implements three modules: Tenant API, Valida-

tion Module, and MultiSpeaker Management Module.

The tenant API enables on-demand remote procedure calls

and reliable messaging exchange via TCP. Setting up the API

this way ensures each request can be reliably sent to the

Controller without having to implement a reliable service at

the application layer. The major API methods exposed by the

Controller is shown in Table I. Although the methods provided

are few, they are sufficient in producing complicated resource

remapping logics.

The validation module takes in tenants’ routing requests

as input and outputs a binary answer. The output is fed

to both the MultiSpeaker management module – for the

module to determine whether to forward the request onto

the MultiSpeaker – and the tenant API so it can indicate to

tenants the success of the operation. The validation module

takes the route and token and checks whether the TIA and

destination address belong to the tenant who owns the token; if

not the validation module marks the request as invalid. Then,

the validation module passes the result to the MultiSpeaker

management module and the tenant API.

The MultiSpeaker management module manages the com-

munication between the Controller and the MultiSpeaker. In

addition to passing routing requests and route inquiries, it also

ensures MultiSpeaker states reflect the state memory stored

at the Controller. To achieve this, both the MultiSpeaker and

Controller maintain an acknowledgement table. Each entry of

the table contains a (TIA, destination IP, action type) tuple,

denoting an entry that the Controller and MultiSpeakers has

to acknowledge as an entry that has been sent to the router. The

MultiSpeaker management module also detects MultiSpeaker

restart so the Controller can bootstrap MultiSpeakers when

they restart; MultiSpeaker management module can detect

MultiSpeaker restart by periodically polling the MultiSpeaker.
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C. MultiSpeaker

MultiSpeaker consists three components: protected API,

BGP module, and transformation module.

The protected API implements methods for MultiSpeaker

to exchange messages with Controller’s MultiSpeaker man-

agement module. The methods are similar to those exposed

by the Controller in Table I, and so we omit it here.

The translation module takes tenant requests as input, and

outputs well-formed BGP Update messages. The translation

module includes different fields in the BGP Update message,

depending on the call being a WithdrawRoute or AddRoute.

For WithdrawRoute() calls, the translation module generates

a BGP Update messages with the WITHDRAWN ROUTES

fields filled. For AddRoute() call, the module generates a

BGP Update message that includes the NEXT HOP and NLRI

fields. In addition to the destination IP prefix and next hop IP

address, Update messages for AddRoute() calls also include

the AS paths. AS paths is a mandatory attribute that encodes

the autonomous system (AS) numbers for which the BGP

Update message has traversed from the prefix origin. Even

though tenants are the origins in supplying the destination

IP prefix, having tenants supply the AS number would imply

tenants having knowledge of the innards between routers and

MultiSpeakers. To avoid such a burden on tenants, Multi-

Speakers act as the origin of tenants’ prefixes. Thus, the

translation module uses the AS number of the MultiSpeaker

as the first AS in the AS path.

The features and attributes implemented by the BGP module

is minimized to the set of features necessary to establish BGP

sessions, add/withdraw routes, and react to router notifications.

Advanced attributes such as AS federation and advanced fea-

tures such as BGP route reflection are not implemented. Using

a BGP module, MultiSpeaker provides information isolation

between the tenants and routers, much like BGP MUX [10].

For tenants, they are isolated from the interactions between

MultiSpeakers and routers, but are still able to perform

route control. On the other hand, routers are not exposed

to the set-up within the RaaS architecture, and interact with

MultiSpeaker as if it is another BGP-capable speaker. This

separation provides flexibility for the implementation of RaaS

to vary with minimal impact to routers and the tenants.

D. Equal-Cost Multi-Path Enhancement (ECMP)

Discussions on the BGP module thus far assumes each

BGP module can only establish one BGP session with each

router (as depicted in Figure 3). Such a configuration would

be fine if tenants only announce a single TIA-resource

mapping at a time. However, in cases where tenants an-

nounce one-to-many TIA-resource mappings (e.g., for load

balancing), multiple MultiSpeakers would be required. This

method would require the number of MultiSpeakers, N , to

be k ×max∀t∈tenants mappingSizet, where k is the number

of routers MultiSpeaker connects to, and mappingSize is the

cardinality of one-to-many TIA-resource mapping. Intuitively,

the equation above says the number of MultiSpeakers needed

is the number of routers needing a BGP session, multi-

plied by the maximum count of one-to-many TIA-resource

mapping needed by any tenant. If redundancy is required,

an unmanageable amount of MultiSpeakers would need to

be deployed. A simple extension to the BGP module could

be implemented, in which each BGP module instantiates

multiple BGP sessions to the router, with each session

capable of announcing one TIA-resource mapping per tenant.

Implementing this extension simply requires the BGP module

to keep separate state machines and data structures for each

session. Since there is no need for the instantiated sessions to

cross-communicate, MultiSpeaker complexity does not change

much. We note that implicit withdraw (Section II-E) will not

work, as router will treat it as another equal-cost multi-path

(ECMP) route.

IV. EVALUATION

In this section we evaluate the performance of our RaaS-

based implementation. We present the methodology in Section

IV-A and the evaluation results in Section IV-B.

A. Methodology

The main metrics of interest are i) the time for the Con-

troller and MultiSpeaker to process each request, ii) memory

consumptions of various data structures, iii) network overhead

incurred by the APIs, and iv) availability of the Controller to

serve tenant requests. To demonstrate the utility of RaaS, we

developed a prototype based on RaaS using C# and Windows

Communication Foundation (WCF) [11] for the remote proce-

dure calls. Our choice of programming language was based on

the ease of development and the use of WCF was its seamless

integration with C#. The experiments were carried out on

COTS hardware that include a dual-core 2.80GHz machine

with 4GB of RAM and two single-core 1.7GHz machine with

less than 1GB of RAM. The timing experiments were carried

out on the dual-core machine, and the network overhead

experiments were carried out across the three machines.

To collect detailed memory usage of the various data

structures, a custom program loads each data structure, one

at a time, and drives realistic loads on the data structures. For

example, to collect the memory usage of the acknowledgement

table, the program loads an acknowledgement table and inserts

various amount of entries to it. The processing time is collected

by implementing a tenant application that sends route requests

and collect the time taken for the Controller and MultiSpeaker

to respond to the requests. Both the memory usage and

processing time experiments described above were carried out

on a single machine, since they are not affected by the network.

A second set of experiments was carried out between two

machines to measure the network utilization.

Since MultiSpeaker’s configuration affects the processing

time and the memory consumption of both the Controller(E.g.,

time: route assignment, memory: MultiSpeaker state table)

and MultiSpeaker(E.g., memory: BGP sessions, time is largely

unaffected because each incoming request is served in separate
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Mean Std dev

Controller Processing Times (ms)

Adding Route 1.24 3.38

Removing Route 1.14 2.93

MultiSpeaker Processing Times (ms)

Announcing Route 0.091 0.67

Withdrawing Route 0.082 0.38

TABLE II: Route Operation Processing Time.

threads), we vary the parameters of the MultiSpeaker’s config-

uration and collect the time and memory metrics. Specifically,

for each experiment, we vary the number of routers (denoted

as RS) and ECMP sessions to each router (denoted as E). In

addition, for the Controller we also vary the number of Mul-

tiSpeakers (denoted as S) being managed by the Controller.

Because we do not have many routers for the MultiSpeaker

to establish BGP sessions, we implemented a simple router

emulator that waits for the MultiSpeaker to initiate BGP

sessions and maintains the session by periodically sending

KEEPALIVE messages.

We also demonstrate the feasibility by showing the success

rate of tenant able to submit to the Controller on the first try is

high with a small number of redundancies, given pessimistic

settings for equipment uptime and replacement time. To do so,

we formulate a theoretical model for the Controller’s, and all

equipments on the path from tenant to Controller’s, availability

and evaluate the success rate for a given tenant request. We use

alternating renewal process (ARP) [12] to model the up-time

and down-time distribution of components in the network, and

derive the probability in the stable state that all the equipments

along the path from tenant to Controller will be up during

a time interval (e.g., maximum TCP retransmission timeout

value). We only model the success rate from the tenant to the

Controller because tenants only interact with the Controller.

Additional details can be found in the appendix.

B. Evaluation

1) Controller-side evaluation: The Controller processing

times for route operations are shown in Table II. We show

the configuration that amounts to little over 1,000 total BGP

sessions at the MultiSpeaker, corresponding to the maximum

memory usage shown in Figure 4b. Assuming the maximum

ECMP possible (i.e 16), the MultiSpeaker is connected to 63

routers.

Table II shows the average and standard deviation of Con-

troller’s processing time for the AddRoute and RemoveRoute

operations. It shows that both operations can respond to the

tenant request within milliseconds of receiving the request, and

thus can handle close to 1,000 requests per second on average.

This processing speed is fast considering that for each tenant

request, the Controller has to inspect up to 1,000 sessions to

find route assignments for all the routers. Route addition is

slightly slower than route removal because it performs one

additional check for the case when the route was withdrawn

over a session but is still outstanding (i.e., the route removal

has not been sent to the router). In this case the AddRoute

operation use the same session in order to avoid a temporary

and unintended ECMP.

Figure 4a shows the memory usage to store the Multi-

Speaker state. We vary the number of MultiSpeakers manages

by the Controller (1, 2, 4). And for each MultiSpeaker we

vary the number of routers it connects to (1, 10, 1000), and

the number of ECMP sessions per router (1, 4, 16). The plot

shows that the memory consumption increases noticeably only

when the number of routers per MultiSpeaker is 1,000. This

is intuitive because when the number of routers is 1,000, each

additional ECMP session per route adds 1,000 more total

nodes to the MultiSpeaker state table. We note that in the

worst case (4 MutiSpeakers, 1000 routers per MultiSpeaker,

16 ECMP sessions per router, 64,000 total sessions), the per-

session state consumes about 300 bytes of memory.

2) Speaker-only evaluation: Table II shows MultiSpeaker’s

processing time for route announcing and withdrawing op-

erations. The processing time measures, per BGP session,

the time between receiving the route operation request from

the Controller and sending the well-formed BGP request out.

Since the time of sending the BGP message to the router

is partly influenced by the network delay, which we cannot

control, we eliminate the network delay by co-locating the

router emulator and MultiSpeaker. The result shows that

MultiSpeaker can handle Controller’s request quickly, often

under 1 ms. Factoring in the network delay, the true response

time might be over 1 ms, as the MultiSpeaker can establish

BGP session with routers via Multi-hop BGP for better

MultiSpeaker placement flexibility. Barring network anomaly,

given the current network bandwidth in Data Centers and the

small size of BGP messages, the network delay should be

small. Adding to the fact that MultiSpeakers and Controller

communicate to each other independent of tenant requests, this

processing delay is only noticeable by tenants if they query

for the route operation status immediately after submitting the

route request.

Figure 4b shows MultiSpeaker’s memory usage with respect

to number of BGP sessions established. Here we do not

distinguished whether the session is connected to the same

or different routers, because the amount of states being kept

for each BGP session is the same regardless of the router.

This figure shows that the MultiSpeaker can maintain 1,000

sessions with moderate amount of memory, making a single

MultiSpeaker process scalable up to thousands of sessions.

Figure 4c shows MultiSpeaker’s memory consumption to

store outstanding entries with various configurations of router

per speaker and session per router. While most configurations

consume less than 20MB of memory, memory usage shoots

up sharply when the routers per speaker becomes high (i.e.,

1,000). The reason is that when the number of routers per

speaker becomes high, each additional outstanding entry per

session results in 1,000×E outstanding entries maintained by

the MultiSpeaker. For example, in the configuration when

RS is 1,000 and E is 4, having 10 outstanding entries per

session results in 40,000 total outstanding entries and having

1,000 outstanding entries per session results in 4,000,000 total
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Fig. 4: Memory Usage Results.

outstanding entries. In reality we do not expect the total

number of outstanding entries to be as high as 4,000,000,

unless the outstanding entries are not periodically cleared by

Controller.

3) Network Overhead: In this experiment we are interested

in observing the network overhead for the communication

between client/Controller and Controller/MultiSpeaker. We

capture the network traffic at the Controller to record traffic be-

tween the client/Controller and Controller/MultiSpeaker, and

later filter the traces to separate the two types of traffic. While

keeping ECMP configuration, we realized it was difficult

to separate traffic from different ECMP sessions. Therefore,

we enable only one session and sent a single request to

capture serialized conversation between the client/Controller

and Controller/MultiSpeaker. The result can be easily scaled

to multiple ECMP sessions, as each distinct session will have

roughly the same amount of network overhead.

Figure 5 implies that, given a typical 1Gbps edge band-

width, our prototype will saturate the link at around 12,500

requests/second (Assuming around 4KB per request. 4KB

incoming request and 4KB outgoing reply). Since our pro-

totype serves around 1,000 requests/second, we will only be

using up to 10% of the link capacity. We also see room for

improvement, as majority of the overhead comes from the

usage of the WCF framework. Additional bandwidth can also

be conserved by avoiding the use of the serialization engines

in WCF [13], which converts all data into XML format.

4) Service Availability: Based on the derivation made in

the appendix, we use R [14] to evaluate the number of distinct

network subnets Controller/MultiSpeaker need to be deployed.

We perform the evaluation by setting various values for the

number of distinct subnets and expected downtime, and record

the success rate. We use the Weibull distribution for the uptime

distribution in Equation 4, due to its ability to model different

hazard rate characteristics with age. Weibull distribution has

the shape (k) and scale (λ) parameter, with the former affecting

the hazard rate over time and the latter the expected uptime.

To understand the effect of the hazard rate parameter, we plot

the success rate against varying k, setting path length = 6,

expected uptime = 6 months, expected downtime = 3 days,

required equipment uptime during request submission (i.e.,

∆T ) = 4 minutes. We choose these parameters based on the
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reference data center topology shown in the Cisco reference

[15], a pessimistic estimation of a typical equipment’s uptime

and time required to replace it, and maximum possible TCP

retransmission timeout (RTO) as defined by RFC 1122 [16].

We do so because that’s the maximum time the client will

wait before considering the Controller/MultiSpeaker dead. We

found that the request success rate is insensitive to k, with the

difference between the maximum and the minimum success

rate less than 0.1% across all k. This is due to the fact

that the stable-state success rate is dominated by the ratio

of the expected up/downtime, and the temporal variation of

the uptime distribution becomes insignificant. Following this

observation, we set k=1 for subsequent evaluations. Setting

k=1 results in exponential distribution, a common distribution

used in reliability engineering. Next, we evaluate the effect

of having distinct subnets for the request to be served. We

assume that each distinct subnet has a completely disjoint

path from other subnets. Then, given the number of disjoint

paths, we calculate the success rate using the same parameters

as the previous experiment. The result is shown in Figure

6a. It shows that, given the same pessimistic setting, the

availability of the overall service is above 90% even when

the Controller/MultiSpeaker is hosted in only one location,

and the overall service availability quickly converges after
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Fig. 6: Availability experiment results.

having more than 2 distinct paths. To gain more insight in

the gain, we increase the expected downtime and obtain the

new success rates. We find the similar conclusion holds: the

success rate converges to a stable value quickly and overall

service remains highly availability. We also see the gain in

having multiple deployment can be significant when services

are expected to be down for a prolonged period of time. In

the case of expected downtime = 2 weeks, adding the service

to another subnet increases the overall service availability by

30%. The above generalization makes a somewhat unrealistic

assumption that paths to different subnets are completely

disjoint, as in reality many components are shared amongst

different paths. To investigate the differences, we modified our

formulation to take into account the shared path length and re-

ran the experiments. Figure 6b shows the result for the case

when expected downtime = 3 days. We find that the relative

availability can be affected by up to 10% when shared path is

taken into account, and a maximum availability is visibly less

when paths are shared. The upside is that the overall service

availability is above 90% in all cases. This is an indication

that network administrators should be careful in deploying the

Controller/MultiSpeakers, and should strive to have as much

path diversity as possible.

In summary, the processing speed evaluations show that

RaaS obviates the need for landlord to deal with individual

requests, results in less personnels needed to process tenants’

requests. In addition, the memory evaluations show that RaaS

components can be implemented on COTS hardware, making

it easily deployable into data center servers. The network

overhead and availability analysis together demonstrate that

placing several RaaS components for redundancy will not

cause overwhelming burden to the network, and only a few

redundant components are needed for the tenant to submit their

requests successfully. This makes RaaS a flexible framework

that can be used to reduce personnel cost and increase network

programmability to multiple tenants.

V. RELATED WORKS

Dynamic and programmable routing platforms are not

unique to RaaS, as there are prior works in both academia and

industry that have proposed and implemented such systems.

However, RaaS design differs from previous works in its ease

of implementation, deployment of common technologies, and

flexibility of tenant-directed route control.

Previous academic works such as NIRA [17], Tesseract [18],

RAS [19], Morpheus [2], Transit Portal [4], and RCP [3]

proposed customizable routing. These works had a similar goal

in providing end-users or clients with the ability to choose how

their packets would be routed. However, some of these works

( [17], [18]) require a fundamental change to the transport

hardwares that they cannot be easily implemented. On the

other hand, RaaS leverages widely-available technologies, so

it can be implemented without infrastructural overhaul. Other

works leverage existing routing technologies, such as BGP,

to control routing either within a single AS ( [2], [3]) or

to various upstream ISPs ( [4]). RaaS also leverages the

same set of technologies to make route-control possible, but

it also provides programmatic interface to clients directly,

while providing performance isolation and independent route

control. These were not discussed at great length or at all

in previous works. Then there are proposals that attempt to

extract routing purely as a service [19], which is similar to

what RaaS is achieving. However, RaaS provides this control

directly to clients, instead of going through a third party,

providing routing as a first-class service.

On the industry side, services such as Amazon’s EC2 [1],

Internap’s Performance IP [20], RouteScience’s(RouteScience

has been acquired by Avaya) [21] PathControl offer route

control services to end-users. EC2 is an infrastructure-as-a-

service (IaaS) system that gives their tenants control over

virtual machine (VM) placement, load balancing, and IP-to-

VM mapping. RaaS differs from EC2 in that RaaS offers the

underlying routing plane as service. Rather than providing IP-

to-VM mapping, for example, RaaS can support mapping of IP

to any entities in the network that is IP-addressable. Internap’s

Performance IP service offers automatic route control based on

network conditions, and would automatically change routing

so customers’ packets traverse through the optimal ISP links.

RouteScience’s PathControl solution is similar to Internap’s

Performance IP, and it is sold as a hardware solution [22].

Since both of these solutions are intended for Internet-side

route customization, there is no programmable API for tenant

to implement their own route-control logic.

VI. CONCLUSION

The traditional paradigm for route customization involves a

laborious and lengthy process, in which landlord and tenants

are tightly coupled. In this paper we introduced the Routing-

as-a-Service (RaaS) framework, where the coupling between

landlord and tenants are lessened. In the RaaS framework,

the landlord only needs to understand the resource set ℜ
of the tenants, and tenants can perform route customization

independently of other tenants. This results in less dedicated

personnel to process tenants’ requests and more independent

route control for the tenants. We showed that our prototype

based on the RaaS framework can process requests quickly,

often within a second of submitting the request. In addition,
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we also showed that it is possible to offer more aspects of the

data center as a service without major infrastructure overhaul.

With data centers becoming more popular and widespread, we

believe RaaS is an important addition to the set of services that

can be offered to tenants.

APPENDIX

A. Basics

We model the data center network as a fat-tree, with

non-leaf nodes as routers/switches and leaf nodes as servers,

with the service reside on the servers. The availability of the

services depend on the availability of the path from the root

of the tree to the leaf; we assume the worst case scenario,

where all requests to the services travel the longest path. For

simplicity, we also assume that no redundancies are in place.

While this assumption does not hold in practice, we assume

this as a worst-case scenario and derive our result for such a

case. For a path p (root → leaf), each equipment’s availability

is modeled by an alternating renewal process (ARP) [23].

We are interested in the stable-state probability that a given

request to the services can be satisfied. Mathematically, let

Aa(t), Ab(t), ..., An(t) be ARPs for components a, b, .., n,

along a path where

Ak(t) =

{

1, if component k is in the up state at time t

0, if component k is in the down state at time t
(1)

Ak(t) is described by bivariate independent and identically

distributed (iid) random variables {(Uk
n , Dk

n), n ≥ 1}, where
(Uk

n , Dk
n) are random variables describing the nth up-time and

down-time intervals for component k, respectively.

S be a random variable where,

S(t, ∆T ) =







1, Aa(ta) = 1 ∩ ... ∩ An(tn) = 1,

t ≤ ta ≤ t + ∆T, .., t ≤ tn ≤ t + ∆T

0, otherwise

(2)

Intuitively, the success of the request is dependent on the com-

ponents along the path to be in the up state, and the minimum

up-time across all components be at least the time needed to

service the request (∆T ). We are ultimately interested in the

stable-state probability that a request is served:

lim
t→∞

Pr(S(t, ∆T ) = 1) (3)

B. Result

Due to space limitation, we state the theorem here without

showing the complete proof.

Theorem 1. Given a path p to the services, where p is a set

of nodes {N1, N2, ..., Nn}. If the state of each node and S(t)

are defined as in Section A, then:

lim
t→∞

(Pr(S(t, ∆T ) = 1) =

(

E[U ] −
∫ ∆T

0
1 − FU (t)dt

E[U ] + E[D]

)n

(4)

To prove the theorem, we have to find the limiting interval

reliability, in which the result is shown in [23]. The theorem

can then be obtained by applying the independence argument

to the starting equation and re-arranging the terms.
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