Efficient Data Capturing for Network Forensics in Cognitive Radio Networks

Shaxun Chen†, Kai Zeng‡, Prasant Mohapatra†
†Department of Computer and Information Science, University of Michigan - Dearborn, Dearborn, MI 48128
‡Department of Computer Science, University of California, Davis, CA 95616
sxch@ucdavis.edu, kzeng@umich.edu, pmohapatra@ucdavis.edu

Abstract— Network forensics is widely used in tracking down criminals and detecting network anomalies, and data capture is the basis of network forensics. Compared to traditional networks, data capture faces significant challenges in cognitive radio networks. In traditional wireless networks, one monitor is usually assigned to one channel to capture traffic, which incurs very high cost in a cognitive radio network because the latter typically has a large number of channels. Furthermore, due to the uncertainty of the primary user’s activity, cognitive radio devices change their operating channels randomly, which makes data capturing more difficult. In this paper, we propose a systematic method to capture data in cognitive radio networks with a small number of monitors. We utilize incremental support vector regression to predict packet arrival time and intelligently switch monitors between channels. In addition, a protocol is proposed to schedule multiple monitors to perform channel scan and packet capturing in an efficient manner. The real-world experiments and simulations show that our method is able to achieve the packet capture rate above 70% using a small number of monitors, which outperforms the random scheme by 200%-300%.

I. INTRODUCTION

The ubiquitous wired and wireless networks play an important role in our daily lives; at the same time, cyber crimes and information security issues are increasing at an unprecedented pace. Network forensics is a discipline that monitors and analyzes network traffic, aiming at detecting malicious network activities and preserving network data as evidences. It is widely used in preventing attacks, tracing down criminals, diagnosing the network, etc. Although it is a newly emerged research area, network forensics attracts a great attention from both network researchers and law enforcement practitioners.

Generally speaking, network forensics is composed of two steps: data capture and data analysis. Between them, data capture is the basis of network forensics, on which the quality of data analysis largely depends. However, data capture is not as easy as it seems, especially in wireless networks. Channel fading, signal interference, mobility of transceivers and ever-increasing data rate make data capture a non-trivial task.

Existing work on network forensics as well as data capture is studied in the context of traditional networks. As an emerging type of network, cognitive radio network is a promising technology to mitigate the scarcity of wireless spectrum. However, in cognitive radio networks, data capture faces additional challenges.

First, according to the FCC’s regulation, unlicensed users should evacuate immediately when an incumbent user appears, which means unlicensed users may frequently change their working channels. Second, cognitive radio networks have a much wider spectrum than other wireless networks. For example, the white space is from 50MHz to 700MHz approximately. Assuming a channel width of 6MHz (the same as the TV channel-width in U.S.), there can be more than one hundred available channels. If we capture the traffic of cognitive radio networks in the traditional way, one monitor should be tuned to listen to one channel. That is, we will need over a hundred monitors in total, making the cost prohibitively high.

In this paper, we propose a novel method, which intelligently switches monitors between different channels to capture the network data spread over a large number of channels with a small number of monitors. Our method is based on two observations. First, although a cognitive radio network may have a large number of channels, not all of them are busy at the same time. Second, for a single channel, there are always intervals between packets. Furthermore, a typical network forensics system usually does not require all the packets; instead, they are only interested in certain packets depending on their specific purposes.

Based on these observations, we propose to predict the arrival time of the next interesting packet by using incremental support vector regression, and then switch monitors between different channels according to our prediction result. To the best of our knowledge, this is the first work investigating data capture for network forensics in cognitive radio networks, and also the first effort to monitor multiple channels with fewer monitors by predicting packet arrival time.

We conduct extensive experiments and simulations. The results demonstrate that given a large number of channels, we can achieve a high packet capture rate with a small number of monitors. Our method outperforms the random scheme by 200%-300%.

The rest of this paper is organized as follows. Section II discusses related work. Section III states the problem, and Section IV introduces our method for packet arrival time prediction. In Section V, we present the protocol for efficient data capture in cognitive radio networks. Section VI evaluates our work. Section VII discusses several related technical issues and Section VIII concludes the paper.

II. RELATED WORK

Data capture techniques for network forensics can be categorized into two types: catch-it-as-you-can and stop-and-listen [1]. The former category requires larger amounts of storage.
while the latter puts higher pressure on the CPU performance. Wireshark, WinPcap, TCPdump, etc. are the tools commonly used for data capture. These tool fall into the first category, but they are also capable of capturing certain packets based on predefined filters.

Efforts have been made to effectively capture packets in high speed networks [2] [3]. Siles studied the performance related issues and encryption-overcoming of data capturing in wireless networks [4]. Geiger et al. [5] pointed out that a monitor can capture the packets from adjacent channels in WLAN when the data rate is low.

In almost all the existing studies, including the work mentioned above, one monitor is used for capturing data in one channel (or link). Choong proposed to use a single software defined radio device to sample multiple channels in ZigBee networks [6]. The feasibility is based on the fact that the maximum channel width of the software defined radio can cover multiple ZigBee channels. However, their approach only works when the modulation rate of the channels is very low (250kbps). It is acceptable for ZigBee networks, but far from practical for general data capturing. When the modulation rate goes higher, the sampling and computation overhead quickly exceeds the hardware processing ability. Besides, the channel width of ZigBee is only 2MHz. For other types of wireless networks, even a software defined radio device cannot cover many channels at the same time. In contrast, our method reuses monitors in the time domain, therefore is not constrained by the modulation rate or the bandwidth of the channel being watched.

Chhetri et al. proposed to schedule sniffers among multiple channels [19], but the goal is to monitor the appearance of wireless users, which is much easier compared to traffic capturing. Moreover, in their work, a pre-known transmission probability is assumed for each user; the sniffers are scheduled without considering the realtime user behavior.

Arora et al. employed multi-armed bandit to formalize the multi-channel monitoring problem [20]. Similar as [19], this method is only good for transient activities and cannot be used to capture packets. Specifically, a slot system is assumed in [20], but they do not care the length of the slot. It is possible that during a slot there come multiple packets or a packet lasts across multiple slots. Besides, the channel switching overhead is not considered in this work.

Time series prediction has been well studied for decades. Auto-regressive moving average models and Kalman filter are most widely used, but they both require that the process being predicted is linear and stationary. Machine learning techniques, such as support vector machine and neural network, do not have such restrictions [7], but they are usually not fast enough for online prediction. Besides, these works are dedicated to predict continuous values; they may experience large errors when predicting a binary variable (in our case, appearance or disappearance of interesting packets).

Phit et al. proposed to predict packet arrival time using neural networks [8]. Historical data of packet inter-arrival time are used as the input. However, this method is only suitable for offline analysis, because the training phase takes considerably long time.

III. PROBLEM DEFINITION

A. Background

Cognitive radio networks typically work in white space, where unlicensed (secondary) users are allowed to access the spectrum opportunistically. However, as mentioned in Section 1, they must evacuate immediately upon incumbent (primary) users’ presence.

Most important primary users in white space are TV towers and wireless microphones. They typically transmit analogue signals. In practice, network forensics systems are interested in capturing data packets (of secondary users) instead of analogue signals.

An alternative to capturing packets wirelessly is to physically connect to the base station or wired infrastructure of cognitive radio networks. However, forensics systems may not have the access to such infrastructure. In addition, in that approach, information like channel quality and signal strength are lost, which can be used to infer users’ location and mobility pattern. Wireless forensics is different from wired forensics in both methods and applicable scenarios. In this paper, we focus on wireless data capture in cognitive radio networks.

B. Problem Definition

Assume that there are N channels in a cognitive radio network. We have only M monitors ($M<<N$). Among N channels, L are busy ($M<L<N$). Here busy channel only refers to the channel occupied by secondary users.

During any period of time, new secondary users may join the network (idle channels get occupied); existing secondary users may quit (busy channels become idle); they can also switch to a new channel and continue communicating (due to appearance of primary signals, change of channel quality, or requirement of certain network protocol). These changes are, if not impossible, very difficult to predict (see discussion in Section 7).

The goal of our work is to capture as many interesting packets from these busy channels as possible.

Interesting packets are the packets that a network forensics system wants to capture and record for future analysis. Whether a packet is interesting or not depends largely on the purpose of the forensics system. Different systems (applications) may have very different interest. For example, a forensics system which monitors video streaming traffic may find I-frames more interesting than P-frames and B-frames, because I-frames can be decoded independently, and usually contain more fundamental information of the video. Another forensics system for network anomalies detection may want to capture ICMP packets instead of normal IP packets, since ICMP packets tend to relate to malicious or suspicious network activities [9]. To define and decide interesting packets is out of the scope of this paper. We assume networks forensics systems know what types of packets they need to capture.

In order to reduce the requirement of the number of monitors (or in other words, to capture more interesting packets with a limited number of monitors), we propose to switch monitors...
between channels by predicting the arrival time of *interesting* packets in each *busy* channel. We assume our monitors have the same ability (radio-wise) as the nodes in the cognitive radio network, and all the monitors are connected by dedicated channels.

The key idea of our method is to reuse monitors in the time domain. The main challenges are listed as follows.

1) **Online prediction.** Our method requires that the prediction of *interesting* packets should be performed on the fly, which calls for a very fast prediction algorithm. The sequence of packet inter-arrival time is not inherently a linear process, which makes traditional moving average models not qualified. On the other hand, machine learning based methods usually take too much time for training, hence are not efficient enough for online prediction.

2) **Overall optimization.** The optimization problem of our method is not as straightforward as it seems. Conservative strategies tend to stay in a channel for longer time, while aggressive strategies tend to switch more often. The tradeoff is interesting packets are usually responsible for scanning the channels in order to find *busy* ones. How to schedule monitors for both tasks is also challenging.

We will provide solutions to these challenges in Section IV and V.

IV. **Packet Arrival Time Prediction**

In this section, we introduce our method for arrival time prediction of *interesting* packets. We present the support vector regression in the first subsection and then, in the second subsection, we improve its performance for online prediction.

A. **Support Vector Regression for Packet Arrival Prediction**

We propose to switch monitors between channels in order to capture more *interesting* packets. Ideally, we want a monitor to stay in the channel when there is an *interesting* packet, and switch to other channels when there is not. Good switching strategy requires a good prediction algorithm to tell us when an *interesting* packet is likely to arrive.

Now we introduce our packet arrival time prediction method using support vector regression. As mentioned previously, traditional methods, such as autoregressive moving average and Kalman filter, are only applicable to linear processes. Among machine learning based methods, support vector machine / regression is often reported to have superior performance [7] [18].

The input of our algorithm is \((a_0, a_1, a_2, \ldots, a_n)\), which are the arrival time of \(n\) successive *interesting* packets in a certain channel. The output is \(a_{n+1}\), the estimated arrival time of the next *interesting* packet in this channel.

In a nutshell, support vector machine is a classification tool. In the training phase, it tries to divide different groups of samples apart by a hyperplane (or a set of hyperplanes), which is carefully constructed and lies in the “middle” of the margin between groups. Support vector regression works similarly. The difference is that the hyperplane is built to approximate all the samples. An error \(\epsilon\) is allowed in approximation. That is, the distance from any sample to the hyperplane is less than \(\epsilon\).

Formally, the hyperplane (i.e. regression function) can be expressed as:

\[
f(X) = W \cdot X + b
\]

Where \(W\) and \(X\) are both \(n\)-dimensional vectors, \(b\) is a real number. \(X\) is the attributes of samples. In our case, \(X = (x_1, x_2, x_3, \ldots, x_n)\), where \(x_i = a_i - a_{i-1}\) (the intervals between consecutive *interesting* packets). The dot between \(W\) and \(X\) is inner product. \(W\) determines the slope of the hyperplane.

As mentioned, all the samples should be within a distance \(\epsilon\) to the hyperplane \(f(X)\). Apparently, there can be many hyperplanes satisfying this requirement. Support vector regression looks for the one in the “middle” of the region where the samples spread (referred to as flatness). This requirement equals to minimizing \(||W||\).

Formally, the problem can be described as minimizing \(||W||^2/2\), subject to:

\[
\begin{align*}
|y_j - W \cdot X_j - b| & \leq \epsilon \\
W \cdot X_j + b & - y_j \leq \epsilon
\end{align*}
\]

where \(X_j\) is the attributes of the \(j\)th training sample, and \(y_j\) is \(a_{n+1}\) of this sample. Minimizing \(||W||^2/2\) is equivalent to minimizing \(W\). We use the former for mathematical convenience.

Up to now, we assume such hyperplane \(f(X)\) exists. However, sometimes it may not be the case due to small \(\epsilon\) and dispersed distribution of training samples. To ensure the existence of \(f(X)\), we allow some samples to have larger errors than \(\epsilon\), which is comparable to the soft margin in support vector machine. The problem can be formalized as:

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} ||W||^2 + C \sum_{j=1}^{f} (\xi_j + \xi'_j) \\
\text{subject to} & \quad y_j - W \cdot X_j - b \leq \epsilon + \xi_j \\
& \quad W \cdot X_j + b - y_j \leq \epsilon + \xi'_j
\end{align*}
\]

where \(\xi\) and \(\xi'\) are nonnegative values accounting for extra errors (as shown in Figure 1), they introduce a penalty while \(\epsilon\) does not), and \(C\) is a positive constant, which decides the trade-off between the flatness of the hyperplane and the amount of extra errors. \(l\) is the number of training samples.

![Figure 1. Error function](image-url)
The above objective function and constrains is equal to minimizing L, which is called Lagrange function:

$$L = \frac{1}{2} \|W\|^2 + C \sum_{j=1}^{l} (\varepsilon_j + \xi_j^2) - \sum_{j=1}^{l} (\eta_j \xi_j + \eta_j^2 \xi_j)$$

$$- \sum_{j=1}^{l} \alpha_j (\varepsilon_j + \xi_j - y_j + W \cdot X_j + b)$$

$$- \sum_{j=1}^{l} \alpha_j' (\varepsilon_j + \xi_j' + y_j - W \cdot X_j - b)$$

where α, α', η and η' are Lagrange multipliers and they are all positive. Minimizing a Lagrangian can be converted to a solvable dual optimization problem. Due to the space limitation, we do not present the detailed derivation here. Finally, the hyperplane can be expressed as:

$$f(X) = \sum_{j=1}^{l} (\alpha_j - \alpha_j') X_j \cdot X + b$$ \hspace{1cm} (2)

Here X is the input (to be predicted) and X_j is the attributes of training sample j. In this equation, b can be calculated by exploiting Karush–Kuhn–Tucker conditions. Details can be referred to [10].

In the above discussions, hyperplanes are used to approximate samples. Since packet arrival time is not a linear process, using hypersurfaces could increase the performance. Therefore, we introduce the kernel tricks. It can be proven that the property of support vector regression still holds if we substitute the inner product in Equation 2 with kernel functions. In practice, we employ Gaussian radial basis function, which is one of the most commonly used kernel functions. It is defined as:

$$k(\omega_i, \omega_j) = \exp(-\gamma \| \omega_i - \omega_j \|^2)$$

where γ is a positive parameter. We use $1/2 \delta^2$ for γ. The updated regression function is:

$$f(X) = \sum_{j=1}^{l} (\alpha_j - \alpha_j') \exp(-\frac{1}{2\delta^2} \| X_j - X \|^2) + b$$ \hspace{1cm} (3)

In the training phase, assuming we have recorded the arrival time of m ($m > n+1$) interesting packets: $a_0, a_1, a_2, \ldots, a_{m-1}$, we first calculate the time interval between them, noted as $x_1, x_2, x_3, \ldots, x_{m-1}$. In the training phase, these m-1 items are organized into m-1 samples, i.e. $(x_1, x_2, \ldots, x_{m-1}), (x_2, x_3, \ldots, x_m), \ldots, (x_{m-1}, x_m, \ldots, x_m)$. For each sample, first n elements are attributes and the last element is the label (y_j). After training, we determine the parameters of the regression function f.

In the prediction phase, n historical time intervals between interesting packets are used as input to predict the future ones. If we want to predict the arrival time of the kth ($k > m-1$) interesting packet (a_k), then let $X = (x_{k-1}, x_{k-1}, \ldots, x_1)$, we have $x_k = f(X)$, and $a_k = a_{k-1} + x_k$.

In Section VI, we will evaluate the accuracy of this algorithm with different training dataset size (l) and different number of attributes (n). We will also show that in a single channel, if interesting packets can be divided into categories, it is better to predict them separately.

B. Expediting Learning Process

For support vector regression based algorithms, prediction is fairly fast while training phase usually takes more time.

In this subsection, we propose several approaches in order to reduce the training time, which is especially important to our method that performs online prediction.

First, we employ incremental learning for the training of support vector regression, which enables us to dynamically add or remove a sample from the training dataset without learning from scratch [11] [12]. The mathematics explanation of incremental learning is complex; the main idea is described as follows.

It can be derived that for most samples, $a_j = a_j'$ in Equation 2. That is, the regression function only depends on a small number of samples, which lie in the “fringe” of the sample space. These samples are called support vectors. In the incremental learning, when a new sample comes, it checks if it is a support vector. If not, the training result remains unchanged. Otherwise, it is added into the support vector set and the parameters in the regression function are re-tweaked. It works similarly when removing a sample.

Although the regression function can be used to predict repeatedly once it is trained, the prediction will become less and less accurate as time passes, because the training data gets obsolete and the traffic pattern changes. Traditionally, without incremental learning, training frequently is not affordable for online predictions due to its high computational overhead. However, with incremental learning, we are now able to update our regression function in a timely fashion.

Second, we use dual regression functions to reduce retraining. As introduced in Section IV, in order to predict the kth interesting packet (a_k), we need to capture the arrival time of $n+1$ interesting packets just before it (a_{k-n-1}, \ldots, a_k). If we fail to capture an interesting packet (say, kth packet), n packets after it cannot be predicted (from kth to $k+n-1$th), because the input needed by the regression function is incomplete. In this case, we have to stay in this channel to capture these n packets, giving up the opportunities of capturing packets in other channels. This is a non-negligible performance loss. Moreover, we probably have to retrain the regression function, because without the prediction results, we cannot compare them with the ground truth, and tell whether the regression function is obsolete or not.

In order to alleviate this situation, we introduce dual regression functions (f and f'). The former predicts the arrival time of the next packet and the latter predicts the one that goes next:

$$(x_1, x_2, \ldots, x_n) \rightarrow x_{n+1}$$

$$(x_1, x_2, \ldots, x_n) \rightarrow f' x_{n+1} + x_{n+2}$$

f' is defined similarly as f, and uses the same model we presented in Section IV. The only difference is that f' predicts two packets ahead. Of course, the training data of f' are in the form of $(x_1, x_2, \ldots, x_n, x_{n+1}, x_{n+2})$, in which the first n items are attributes and the last is the label.

We maintain f and f' simultaneously. If an interesting packet is missed (say, kth packet, caused by mis-prediction of f or monitor unavailability), we utilize f' to predict the kth interesting packet. If it is a match, the process goes on as normal. No retraining is needed and a_{k-1} (predicted value) is used as the ground truth for the next few predictions. On the other hand, if the prediction of f' still does not match, the monitor will keep staying at this channel for at least n interesting packets’ duration and then perform an incremental retraining.
In this updated version of method, two consecutive mis-predictions \((k-l)\) and \(k\) suggest the obsoleteness of the regression function \(f\) (as well as \(f'\)). In contrast, the old method has to stick on a channel for quite a while upon a single miss, which may occur frequently and does not necessarily imply the invalidation of the regression function. Therefore, the updated method reduces a large amount of retraining and the time stuck in a single channel. Of course, maintaining \(f'\) itself introduces overhead. However, the overhead is not high with incremental learning, and it is worthwhile because being stuck on a channel may cause loss of packets in other channels and thus a vicious cycle.

An alternative method for dual regression functions is to treat the sequence of interesting packets arrival time as discrete time series. We can still use the model presented in Section IV A to perform prediction. However, in this case, the training samples are in the form of \((j, a_i)\), where \(j\) is the single attribute (sequence number) and \(a_i\) is the label (arrival time of the \(j\)th interesting packet). The advantage of this method is that it is able to predict multiple future packets with a single regression function. However, compared with the regression function we use, it requires much more training samples to achieve decent accuracy. We will compare their performance in Section VI.

Besides two modifications discussed above, we also apply some tricks to further expedite our method. We store the values of the kernel (Gaussian radial basis function) in a matrix, thus avoid computing every time during training. Besides, the regression function is traditionally trained using various \(\varepsilon\) and \(\xi\), and then the one with the best accuracy is adopted. However, this process is very time-consuming. We fix the values of \(\varepsilon\) and \(\xi\) at \(\varepsilon_{40}\) and \(\xi_{20}\) respectively (\(\tau\) is the average inter-arrival time of the recent interesting packets), which largely reduces the computing time without obvious decrease of prediction accuracy. We will show the results in Section VI.

V. Monitor Multiple Channels with A Small Number of Monitors

In the previous section, we present our method for packet arrival time prediction. Multiple efforts are launched to accelerate the algorithm and make it qualified for online use. In this section, we first introduce the monitor scheduling method based on the prediction results, and then present the complete protocol for data capturing in cognitive radio networks.

A. Monitor Scheduling

Packet arrival prediction is independent for each channel. Based on these predictions, a limited number of monitors are scheduled to cover a large number of channels. In this subsection, we assume that we already have the prediction results.

Figure 2 shows an example of three channels. Each square is an interesting packet, and we assume there are two monitors, originally residing at channel A and C.

In order to capture all the interesting packets, a valid scheduling is that the first monitor catches A1, B1, A2, A3, A4 and B4, while the second captures C1, C2, B2, B3, C3 and C4. Of course, there are many possible scheduling schemes. Among them, the one with minimum channel switches is preferred; the reason is as follows.

First, channel switching has overhead. Although switching under the monitor mode is faster than other modes, it still needs some time. Taking 802.11bg wireless cards for example, channel switching takes 3-20ms [13]. The more a monitor switches, the less time it can spend on data capturing.

Second, continuously staying in a channel for longer time helps verify the prediction algorithm. Prediction results are compared with the ground truth to decide whether retraining is necessary. Frequent channel switching impedes the gathering of the ground truth.

In the example of Figure 2, the solution mentioned above is the optimum in this sense, which only has 5 switches (shown as arrows in Figure 2). However, in the general case, assuming the arrival time of all the interesting packets are known, finding a scheduling scheme that minimizes the number of monitor switches is an NP-hard problem (when the number of monitors is less than the number of channels). In addition, the prediction algorithm cannot forecast very far ahead, and prediction errors are inevitable. Therefore, it is not feasible to establish an algorithm that always gives the optimal solution.

Instead, we propose a greedy method to schedule the monitors with relatively few channel switches. If an interesting packet will arrive within \(\tau\) ms by prediction and no monitor is now in this channel, a scheduling activity is triggered. Among all the available monitors, the one that currently has the longest “free interval” is selected and switched to capture this packet. The monitor will stay in this channel until being scheduled and switched again. The algorithm is shown as follows.

An upcoming packet in channel \(i\) triggers scheduling

\[
\text{latestNext} = 0; \text{monitorSel} = -1;
\]

for any monitor \(j \in \text{AM}\)

\[
\text{if} (\text{a}_{j}^{\text{ch}(j)} > \text{latestNext})
\]

\[
\text{latestNext} = \text{a}_{j}^{\text{ch}(j)},
\]

\[
\text{monitorSel} = j;
\]

if (monitorSel != -1)

\[
\text{switch monitor monitorSel to channel} \ i
\]

delete monitorSel from AM

else return false

Algorithm 1. Monitor scheduling

Here, AM is the set of available monitors, \(\text{ch}(j)\) is the current channel that monitor \(j\) residents, and \(\text{a}_{j}^{\text{ch}(j)}\) is the predicted arrival time of the next interesting packet on channel \(\text{ch}(j)\). Available monitors are defined as follows.
Two types of monitors are busy. First, if an interesting packet will arrive within w ms by prediction, the monitor currently on this channel is set to busy until this packet is captured or timeout. The other type is the monitors being occupied in a retrain process triggered by two successive mis-predictions (refer to Section IVB). Besides, a few monitors are dedicated for scanning (see Section V B). All other monitors are available.

This algorithm is linear and fast enough for online scheduling. The greedy strategy it uses is a good approximation of minimizing switches in practice. For the example shown in Figure 2, the scheduling performed by this algorithm is the same as the optimum. w and v mentioned above will be defined in the next subsection.

B. Protocol for Data Capture in Cognitive Radio Networks

We have discussed the packet prediction and monitor scheduling algorithm in the above sections. In this subsection, we first present our method for channel scan, which detects channels for secondary signals, and then present the complete version of the data capturing method in cognitive radio networks.

In Section VA, we introduced our algorithm that switches monitors between channels. We assumed these channels are all busy. However, in a cognitive radio network, only some of the channels are occupied by secondary users (referred to as active channels; we do not capture primary users’ traffic, because they transmit analogue signal, see Section III). The rest of them are used by primary users, experiencing low channel quality or simply idle (referred to as inactive channels). Leaving monitors staying in inactive channels is a big waste. We should find out active channels before applying packet prediction and monitor scheduling algorithms.

Before going into the details, we define and recall some notations. The cognitive radio network has N channels and we have M monitors. Algorithm 1 is executed v ms before a packet arrives, and a monitor is set as busy w ms ahead of packet arrival (see Section VA). t_0 is the time relax of packet arrival prediction. That is, for any predicted arrival time a, we schedule the time slot $[a-t_0,a+t_0]$ for packet capture. If an interesting packet is captured in this time slot, it is called a match. Otherwise, a mis-prediction is assumed. t_s stands for the time overhead for channel switching. l is the number of samples needed for the first-time training in a new channel. AM is the set of the current available monitors.

We use S monitors dedicatedly for scanning (we choose $S = \lceil M/6 \rceil$ in our method). It is a tradeoff between the number of monitors consumed and the delay of the secondary user detection. All the inactive channels are averagely assigned to these monitors. They sequentially scan their assignments repeatedly and report the emergence of secondary users.

In addition, for any other monitor, if it successfully captures an interesting packet in the first half of the scheduled slot ($[a-t_s,a]$), it quickly switches to one of the inactive channels to detect for secondary signals. This operation is transparent to the monitor scheduling algorithm. The reason for doing this is that we want to make full use of the scheduled slot, and help those dedicated monitors to accelerate the discovery of new secondary users.

In case of the disappearance of secondary signals, detection is easier. After two mis-predictions, a monitor will be scheduled to stay in this channel and perform retraining. Absence of the secondary signal will be found. No extra efforts are needed.

Now we briefly describe the protocol of our method for data capturing in cognitive radio networks.

1) Monitors scan the inactive channels in the manner as above. Once a new secondary signal is detected, this channel is marked as active. At the same time, an available monitor is switched to this channel to perform training, and removed from AM.

2) After collecting l interesting packets, the initial training is completed. The monitor is set back to available state unless the next interesting packet arrives within w ms.

3) After training, future interesting packets are predicted by f and f' in each active channel. v ms before the next packet arrival, Algorithm 1 is executed to pick a monitor from AM to capture it if no monitor is currently in the channel. Otherwise, the monitor in this channel is set to busy w ms before the arrival until the packet is captured.

4) If two consecutive mis-predictions occurs in an active channel, an available monitor is assigned to this channel and perform incremental retraining. This monitor is removed from AM until retraining is done.

5) Once Algorithm 1 returns false (no more available monitors), our method enters saturated mode and stops marking a channel as active even if a secondary signal is found. Saturated mode ends when an existing secondary user quits from an active channel.

6) Under the saturated mode, if Algorithm 1 returns false with the ratio higher than a threshold, an active channel is marked as inactive, which means we give up data capturing in this channel temporarily. By default, remarking process starts from the active channel with minimum number of interesting packets per unit time.

In our method, as mentioned in Section III, all the monitors are connected by dedicated channels and their clocks are synchronized. This assumption is reasonable, since monitor array products are widely available in the market (but the number of monitors in the array is limited). Communications between monitors (and the controller) are fast and knowledge is shared.

In the above protocol, one or more channels are temporarily relinquished when monitor shortage occurs. We use this conservative strategy because recklessly covering more channels will cause more retraining, less available monitors, and thus a vicious circle.

Some parameters in the protocol have certain constraints. v should be larger than $(t_s + t_f)$, as well as w. The reason for the former is straightforward. For the latter, if the monitor in the current channel is marked as available and switched to another channel, the remaining time should be long enough for other monitors to switch to this channel and catch the next packet. Besides, t_s is larger than l_s, which helps maintain the transparency when ordinary monitors are opportunistically used for channel scan. Concrete value of the parameters will be assigned in the next section.
VI. EVALUATIONS

We conduct comprehensive experiments and simulations to evaluate our method for data capturing in cognitive radio networks. We first test the accuracy of the packet arrival prediction method under various traffic types, and then evaluate the performance of monitor scheduling algorithm. After that, the effectiveness and overall performance of the complete method are evaluated.

A. Performance of Packet Arrival Time Prediction

In this subsection, we evaluate the performance of our method for packet arrival time prediction. As discussed in Section IV, a support vector regression based model is built upon training. The arrival time of \(n \) latest packets are used to predict the arrival time of the next packet.

We first test the influence of different types of traffic on our prediction method. Three types of trace data (FTP, VoIP, and web browsing traffic) are collected from real-world scenarios. In the FTP and VoIP traces, we assume all packets are interesting. For web browsing, we test two cases: all packets are interesting and only ICMP packets in the trace are interesting.

The results are shown in Figure 3. The y-axis is the relative estimation error of predicted arrival time, which is defined as \(\frac{|\text{real} - \text{estimated}|}{\text{real}} \), where \(\tau \) is average inter-arrival time of interesting packets. The errors of 120 predictions are averaged for each point. If there are averagely 50 interesting packets per second, relative estimation error is 10% means that the prediction error is 2ms in average. The x-axis shows the number of attributes (\(n \)) used as input of the regression function. In this experiment, all regression functions are trained by 100 recent interesting packets.

But large \(n \) also has drawbacks, in that a monitor has to stay in the channel waiting for \((n+1) \) interesting packets if two consecutive mis-predictions occur. The larger \(n \), the longer it waits. For our method, we choose \(n = 6 \), since the performance gain quickly shrinks when \(n > 5 \). All the following experiments use this value unless otherwise specified.

In the following experiment, we compare our prediction method with two other strategies. Strategy A tests various \(c \) and \(\xi \), and then chooses the best for the regression function. The rest of its settings are the same as our method. Strategy B treats the packet sequence as discrete time series, which can predict far ahead with current knowledge (please refer to Section IV B). We use web browsing traffic for this test, and only ICMP packets are interesting. The results are plotted in Figure 4.

![Figure 4. Comparison of three strategies](image)

The y-axis is the relative estimation errors, while the x-axis stands for the number of samples used for training. Theoretically, strategy A should perform better than ours, yet the result shows that their accuracies are close, which may stem from the over-fitting effect of the former. Since strategy A is far more time-consuming than ours, we do not choose it. For strategy B, it is more sensitive to the size of the training dataset. It cannot achieve comparable performance as ours with less training data. Considering the result of this test, we use \(f = 35 \) for our method to balance between training time and performance. All the following experiments use this value unless otherwise specified.

In the next experiment, we test the scenario of interleaved interesting packets, where VoIP traffic and web browsing traffic are transmitted in the same channel. That is, a user is making an IP phone call and browsing web pages at the same time. Similarly, we assume VoIP packets and ICMP packets are interesting.

We run our prediction algorithm twice. In the first round, VoIP traffic and ICMP packets are treated as a single sequence. In the second round, we separate them, and train two different regression functions to predict the next VoIP packet and the next ICMP packet separately. VoIP packets are also IP packets. We distinguish them for the IP packets in web browsing traffic by identifying source and destination IP addresses. The result is shown in Figure 5.

From Figure 5, we can see that separate prediction has much better performance than mixing them together. Therefore,
if a network forensics system wants to capture multiple types of packets in a channel, we should categorize the traffic first, and then apply our prediction method to each category separately.

We have presented the evaluation results of our prediction algorithm above. Now we further incorporate the monitor scheduling algorithm (Algorithm 1) to test the overall performance of our data capturing method. In this subsection, real-world tests are performed in a simplified scenario, where we do not consider dynamic join and leave of secondary users, and monitors dedicated for scanning are not used.

We use HP nc6000 and Dell E5400 laptops equipped with 802.11bg wireless cards (Atheros or Intel chipset) for our test. Three pairs of laptops (or AP-laptop pair) are working at channel 1, 6, and 11, respectively. It simulates a cognitive radio network with three channels and one monitor.

In the first experiment, channel A is web browsing in which ICMP packets are interesting. Channel B is occupied by VoIP streaming, which has a data rate of approximately 6Kbps and all the packets are interesting. Channel C is not used. We only have one monitor (also a laptop with 802.11bg wireless card, in monitor mode) to capture the traffic on channel A and B using our method. \(t_s \) (channel switch time) of the monitor is about 5ms. \(w \) and \(v \) are both set to \((t_r + t_s) \), where \(t_r \) is the time relax for packet arrival prediction (see Section V B).

We vary \(t_r \) from 2 to 18ms and the packet capture rate (i.e. captured interesting packets / total interesting packets) is shown in Figure 7. From the experiment result we can see that when \(t_r \) is around 8ms, we are able to achieve the packet capture rate as high as 82%. When \(t_r \) is small the capture rate decreases because even small prediction errors cannot be tolerated. When \(t_r \) gets larger, \(w \) also gets larger, thus the monitor may not have enough time to switch to other channels. We choose \(t_r = 8\)ms for our method. The rest of experiments use this value unless otherwise specified.

In the next experiment, we test the influence of traffic loads on our method, and compare its performance to the baseline (random capture). Channel A and B are the same as above, while channel C is used for FTP downloading (assume all download packets are interesting). We vary the download speed of channel C and use one and two monitors respectively to capture the traffic of all three channels. The result is shown in Figure 8.

In the one monitor case, we can see the packet capture rate of our method decreases quickly when the data rate of channel C goes higher than 280Kbps. This is because with higher data rate, the time intervals between packets in channel C become shorter, which is not enough for a single monitor to switch to the other two channels. In the case of two monitors, such per-
formance deterioration is not found. Even if one monitor is stuck in the busiest channel, the other still can switch between the other two channels freely.

For the random scheme, monitor(s) switch between channels randomly. The experiment results demonstrate that for both one or two monitor cases, our method significantly outperform the random method. This experiment also implies that our data capturing method is able to achieve high channel-over-monitor rate if the distribution of interesting packets is sparse.

C. Data Capture Performance of Large Number of Channels

Now we move on to the performance of the complete version of our method. In this subsection, we increase the number of channels; consider dynamic join and leave of secondary users; in addition, secondary users will change their current communication channel upon the appearance of primary users. 802.11bg networks only have three non-overlapping channels; this part of evaluation is conducted by simulation.

In our settings, there are 60 channels \(N = 60 \) in total, and about 20 (18-22, due to dynamic join and leave) of them are occupied by secondary users at any given time. When newly coming or changing a channel, a secondary user randomly chooses one of the currently available channels. Real traces are used to simulate the packet communication. Among active channels, 10 are web browsing traffic where in half of them, ICMP packets are interesting; and for another half, all packets are interesting. 5 channels are VoIP traffic, and another 5 are video streaming. For the former, all packets are interesting while for the latter, only I-frames are interesting. Primary users are simulated by placing special packets in the channel.

We use 11 monitors \(M = 11 \), and one or two of them are dedicated for scanning secondary signal. The rest of parameters are the same as experiments above. The result is shown in Figure 9. The x-axis is the average time a secondary user stay in a channel before it quits the network or jumps to another channel.

Our method significantly outperforms the random scheme. Without channel scan and packet arrival prediction, 11 monitors had a difficult time dealing with 60 channels. The packet capture rate of the random scheme is less than 20\%. On the contrary, our method is able to achieve a packet capture rate of 70%-75\% most of the time (when secondary users are in a channel longer than 8 seconds averagely). With two scanning monitors, the capture rate is higher when secondary users have more dynamics. That is because a single scanning monitor has higher delay to find newly coming signals. When there is less dynamics, the configuration of single scanning monitor has better performance, for it in turn leaves more monitors for packet capture. In the protocol, we make a tradeoff and \(\frac{M}{6} \) monitors are assigned dedicatedly for scanning.

In the next simulation, we vary the numbers of monitors, the number of total channels, and the number of busy channels, to test the scalability of our method. The average time a secondary user staying in a channel is set to 10 seconds and \(\frac{M}{6} \) monitors are dedicated for scanning. The traffic types are the same as above. The number of traces for each type is adjusted proportionally.

In Figure 10, “20/60” means in total 60 channels 20 are busy, and so forth. “R” means the random scheme, while without “R” refers to our method. We can observe from the results that our method has good scalability. When the number of monitors is relatively small, the capture rate almost increases linearly. When the number of busy channels is significantly larger than the number of monitors, our method still provides best-effort service without sharp performance deterioration. Under the various conditions, it always performs much better than the random scheme.

VII. DISCUSSION

A. Dynamics of Secondary Users

As mentioned, in cognitive radio networks, secondary users opportunistically access the spectrum. They dynamically join and leave the network, and also change their channels to avoid primary users. An optional operation mode in IEEE 802.22 even requires channel hopping on a regular basis [14].

In order to catch up with such dynamics, we employ scanning monitors in our method to scan inactive channels repeatedly, as well as opportunistically utilize the free time intervals of other monitors (see Section V B).
An alternative might be probabilistically predicting the appearance of secondary signals. Some research work has been done to predict channel availability in cognitive radio networks [15] [16]. It seems that we can utilize them to predict unavailable channels (secondary signals) and save scanning monitors. However, these studies assume that secondary users’ behavior is consistent over time or follow certain probabilistic distributions. These assumptions may not be true in practice.

First, secondary users’ behavior usually has a lot of randomness. Secondary users of a network in a period of time may largely differ from the users of the same network in another period of time. It is difficult to assume they have similar behavior. Second, the channel choice of secondary users is a function of the scanning algorithm and the channel measurement. Different users may use different scanning algorithms, such as sequential scan, optimal stopping, random access, etc [17]. On the other hand, a user’s location, environment and hardware accuracy can greatly affect the measurements of channel state and channel quality. Therefore, the channel choice of a secondary user is very difficult to predict. Affected by these factors, probabilistically predicting the appearance channel of a secondary user can hardly achieve high accuracy in practice.

B. Geographical Coverage Issues

In the previous sections, we did not discuss the geographic issues for data capturing. In a wireless network, especially a network with large coverage, monitor(s) in a single place may not be able to hear all the links. However, for cognitive radio networks, addressing this problem is relatively easy. As the mainstream standard for cognitive radio network, IEEE 802.22 has a star topology; all the secondary users communicate to the base station. In order to capture the packets in such a network, we can simply put all the monitors close to the base station.

If such placement is not convenient or not available for network forensics systems, or cognitive radio devices work in ad-hoc mode, we may need extra monitors. In this case, the locations of monitors should be carefully designed, considering both geographical coverage and workload balance.

C. Application Dependent Packet Prediction

As discussed, we predict the packet arrival time using support vector regression, which is a general method applied to all traffics. In some cases, if the type of application is known, the prediction accuracy can be further improved. For example, FTP download traffic has a regular pattern that the intervals between the packets are almost identical. VoIP and video streaming also has very predictable behavior.

Of course, identifying application type by packets or traffic characteristics is a challenging problem, especially the payload of wireless packets are typically encrypted. However, for some easy cases, information in the header, such as well-known port numbers and source/destination IP address can be used to identify the application and helps improve the accuracy of prediction.

VIII. CONCLUSION

In this paper, we introduced a systematic method for data capturing in cognitive radio networks. Given a large number of channels, our method is able to achieve high packet capture rate with a small number of monitors.

In order to reuse the monitors in the time domain, we proposed a packet arrival prediction method based on incremental support vector regression. A monitor scheduling algorithm and a comprehensive protocol are provided to coordinate monitors among channels. We conducted both real-world experiments and simulations to evaluate our method. The results show that our method significantly outperforms the random scheme and has good scalability.

REFERENCES