Hardware Architecture for Simultaneous Arithmetic Coding and
Encryption

Amit Pande!, Joseph Zambrend, and Prasant Mohapatra'
!Department of Computer Science, University of Calofirnia, iBaCA, USA
2Electrical and Computer Engineering, lowa State Universiy,USA
email: amit@cs.ucdavis.edu, zambreno@iastate.eduam@<s.ucdavis.edu

Abstract— Arithmetic coding is increasingly being used in Arithmetic coding is a data compression technique that
upcoming image and video compression standards such &hcodes data by creating a code string which represents a
JPEG2000, and MPEG-4/H.264 AVC and SVC standarddractional value on the interval [0, 1). When a string is com-
It provides an efficient way of lossless compression and repressed using arithmetic coder, frequently-used chasacte
cently, it has been used for joint compression and encrgptioare stored with fewer bits and not-so-frequently occurring
of video data. In this paper, we present an interpretation ofcharacters are stored with more bits, resulting in fewes bit
arithmetic coding using chaotic maps. This interpretationused in total [2]
greatly reduces the hardware complexity of decoder to use This paper discusses arithmetic coding from a slightly
a single multiplier by using an alternative algorithm and different perspective. Recent work has established haW-ari
enables encryption of video data at negligible computation metic coding can be viewed as an iteration on piece-wise
cost. The encoding still requires two multiplications. tex linear chaotic maps [3], [4]. Further, many researcherghav
we present a hardware implementation using 64 bit fixedtudied the use of arithmetic coding for joint encryption
point arithmetic on Virtex-6 FPGA (with and without using and compression [5], [6], [7]. For example- In [8], a chaos-
DSP slices). The encoder resources are slightly higher thabased adaptive arithmetic coding technique was proposed.
a traditional AC encoder, but there are savings in decoderThe arithmetic coder’s statistical model is made varying in
performance. The architectures achieve clock frequency afature according to a pseudo-random bitstream generated
400-500 MHz on Virtex-6 xc6vIx75 device. We also advocatby coupled chaotic systems. Many other techniques based
multiple symbol AC encoder design to increase throughen varying the statistical model of entropy coders have been
put/slice of the device, obtaining a value of 4. proposed in literature, however these techniques sufben fr
losses in compression efficiency that result from changes
Keywords: arithmetic coding, hardware implementation, chaoticin entropy model statistics and are weak against known

maps, multimedia encryption attacks [9]. Recently, Grangetto et al. [5] presented a Ran-
domized Arithmetic Coding (RAC) scheme which achieves
1. Introduction encryption by inserting some randomization in the arithimnet

coding procedure at no expense in terms of coding efficiency.

The state-of-the-art video coding standards such as SVRAC needs a key of length 1-bit per encoded symbol. Kim
(technically Annex G of MPEG-4/H.264 AVC) [1] is been et al. [6] presented a generalization of this procedurdedal
widely adopted in current video application systems due t@s Secure Arithmetic Coding (SAC). The SAC coder builds
its outstanding coding performance, and scalable praggerti over a Key-Splitting Arithmetic Coding where a key is used
which allow deployment in fluctuating channel conditionsto split the intervals of an arithmetic coder, adding inpod a
and to serve heterogeneous clients. There are three entropytput permutation to increase the coder’s security.
coding tools adopted in H.264/SVC. One is Context-based In this paper, we extend this discussion to hardware
Adaptive Binary Arithmetic Coding (CABAC), based on community - to study the hardware optimizations in design
arithmetic coder. The other are Context-based Adaptivef such schemes. Particularly, we study the implementation
Variable Length Coding (CAVLC) and Exp-Golomb coding of arithmetic coding using piece-wise chaotic maps [3], [4]
(to code syntax elements). CABAC can achieve averageds we shall study, this implementation has lower decoder
bit-rate savings of 9% to 14% at the cost of higher com+equirements than the commercial implementations. Apart
putational complexity in comparison to CAVLC. However, from these, chaotic maps have also been used in cryptogra-
the increased computational complexity and strong datphy and for pseudo random number generation [10].
dependencies significantly restrict the throughput of CEBA The reduced decoding efficiency of arithmetic coding al-
decoder. This restriction becomes a challenge in hardwailews it to trend towards the low computational complexity of
design of CABAC coder making CAVLC more suitable for Huffman coders, allowing BAC to enter embedded systems
decoding in low-power embedded systems. market. The aspects of context-modeling and adaptation

Syntax L. bin Context bin Arlthmenc Bit stream
Sement Binarizer Modeler SOTTeRT CodTn g
model Engine

Fig. 1. Block diagram of CABAC coder

and renormalization, as done in CABAC coder are beyond from DSP48EL1 slices on Virtex-6 FPGA, while other
the scope of this work, where we focus on architectural using reconfigurable multipliers and mapping to hard-

optimizations on encoder and decoder processes. ware 6-LUTSs.
) 3) We advocate the multiple-symbol encoding which
Why another design? makes sense for throughput/ area.

An inquisitive question which comes to mind at this Scope of the work
point is the need for hardware implementation of chaotic))))
maps. When arithmetic coding is already been done using In the regular coding mode, prior to the actual arithmetic

traditional ways, why do we need yet another architecture$°ding process the given binary data enters the context
The motivation to develop a hardware architecture for"00€ling stage, where a probability model is selected such

chaotic maps iterations is summarized below: that the corresponding choice may depend on previously

. encoded syntax elements. Then, after the assignment of a
1) Arithmetic coding done using chaotic maps is asymmet- . o ;

fic in nature, (explained in later sections) makin thecontext model, the bin value along with its associated model
decoder arc,hitecfure simpler than existing framgworkiS passed to the regular coding engine, where the final stage
for AC. The reduced decoder complexity is highly of arithmetic encoding together with a subsequent model

. ; ; i ki I Fi 1). We shall ict th
desired to reduce the power and computational requir updating takes place (see Figure 1). We shall restrict the

ments of video decoding in low bower mobile deviceserbcus of further discussions on the final arithmetic encgdin
9 P ‘(and decoding) stages of CABAC coder.

Current mobile video profiles use Huffman coding
instead of Arithmetic coding to reduce the computa-2 | jterature Review
tional complexity, which leads to average compression
inefficiency of 15%, particularly poor performance in
coding events with symbol probabilities greater than
0.5, due to the fundamental lower limit of 1 bit/symbol
on Huffman coding [11].

Adaptive minimum-redundancy (Huffman) coding is ex-
pensive in both time and memory space, and is handsomely
outperformed by adaptive AC besides the advantage of AC in
compression effectiveness [14]. FenwickSs structureiresju

2) Recently, arithmetic coding based encryption scheme'é';’t " WOI:[?]S of memory tlo mar:atge an P—;ymbql all_iphf? bet,
have been proposed in research literature for joinYV ereas ne various impliementations ot dynamic Huttman

compression and encryption purposes [7], [12]. ItwouldCOOIIng [15], [16] consume more than 10 times as much

be interesting to integrate both coding and encryptiod"€MO"Y [17]. . .

using chaoticgmaps atg a computationalgcomplexityﬁgwer. Hardware arc hltect.ures have peen proposed in research

than existing implementations. This motivates the neecl,terature for arithmetic coding using CACM model [18]. or

of coding and encryption architecture using ChaoticrelateoI works [14], [19], [20]. CABAC or Context-Adaptive

Mmans Binary Arithmetic Coder is used in H.264 AVC and SVC.
pS. gpe critical path of coder is the multiplier, which is remdve

3) Chaotic maps can be used to Pseudo-Random Numb . !
Generation (PRNG) [10] and stream ciphers [13], apar{n iﬁAB'?‘C fnd rec?n;ilrptlierelntadt:znst [21]r’n[22],m[2r3] b3i' N
from arithmetic coding. These have been found to be'>NY & looK-Up approximatio (leading to some compressio

. . : inefficiency).
light weight and simple. There has been little work [24], [25], however, in im-
Contributions plementation of chaotic maps on hardware. However, the

. o _ _ recent trend toward joint compression and encryption using
The main contr|but|o.ns of t.h|s paper are as follows: ~ chaotic maps and arithmetic coding for low power embedded
1) We introduce arithmetic coder architecture usingsystems would be greatly complimented by an efficient

chaotic maps which has potential advantages in redugrardware architecture, as presented in this paper.
ing decoder complexity and allows combined encryp-

tion. Binary Arithmetic Coding (BAC)

2) We present two architectures for FPGA implementation Binary arithmetic coding is based on the principle of re-
of the proposed scheme: one using explicit multiplierscursive interval subdivision. We start with an initial intel

1 j i
: N

[0,1) and keep dividing it into subintervals based on the '| ! | A :

I

1
probability of incoming symbols. A good detailed overview ,' I- Onzs - i
10al g, 7 o

of BAC is presented in [14] 01 on! ol |

1
;|

\
' R

i ||

3. How do we interpret AC using Chaotic
Maps?
P \ I

A description of equivalence between binary arithmetic |
coding and chaotic maps is given in earlier works [4], [7]. I v/ o 1
In this section, we gave a brief overview of N-alphabet L I \ !
arithmetic coding to familiarize the reader with codingngsi 0 ! 0 oot e
piece-wise linear chaotic maps. () (b)

Scenario: We have a strings = x1, xs, ...x5; consisting ,) L)) .
of M symbols (Vv unique symbols) to be encoded. The I_:|g. 2:Asamp_|e piece-wise Im_ear map f_or arithmetic coding
probability of occurrence of a symbal, i € 1,2,..n is |IK& compression (a) The entire map is shows) (b) A
given by p; such thatp; = N;/N and N; is the number of smglt_a linear part. of the mapf) |s_zoomed. IF can have a
times the symbok, appears in the given string. positive or negative slope depending on choice

Description: Consider a piece-wise linear map) (with

¥
1
1
|

the following properties: currence of symbok;.
« It is defined on the intervgDd, 1) to [0,1) i.e.
endy, — begy, X p;
p: [0,1) — [0,1)
= endy, — begr, = C X p;
. ggisz]j?;an be decomposed into N piece-wise linear We recall thatz,le(endk _begy) is same as the input
N width of [, ox = p, which is 1. Also,>" Y p; = 1.
p= U Ok Thus, we get the value of constant C to he
k=1
= endy, — begr, = p;
« Each parto, maps the region on x axigegy, endy,) to
the interval[0,1) i.e. Figure 2 shows a sample map fulfilling these properties. Fig-
ure 2(a) shows the full map with different pagts, 02, ...on
ok : [beg, endy) — [0,1] present while Figure 2(b) zooms into individual linear part
The last two propositions lead to: or. The maps are placed adjacent to each other so that each
N input point is mapped into an output point in the rarf@d).
| [begk, endi) = [0,1) Encoding/ Decoding

The decoding process is quite simple. The encoded value
is considered as an initial valuB/. This value is iterated
Va € [begn, endy) over the piece-wise Iine_ar map M times to geF M i_terated
valuesV;. Each value is mapped to piece-wise linear part
e (0,1):y = ox(x), and 0; and thus to corresponding.
vy € 10,1) The encoding process is done by reversing the input
Jz € [begr, endy,) : op(z) =y string to zas, zar—1, ...x1. Each input character is mapped
. . _ to unigue symbolss; and then to piece-wise linear maps
« p is a many-one mapping frorf,1) to [0,1). This , Thus, we get a sequence of piece-wise linear maps
implies that the decomposed linear mapg)(don't corresponding to input strin@,,,, 0s,, ,...02,. We start
intersect each other i.e. with the initial interval [0,1) and back-iterate this intat
N . , N = over chaotic maps using the stripg,,, 0x,,_,---0., t0 geta
VU #3) : [begi end) [lbeg;, end;) = 0 final interval. The output codeword is chosen as the shortest
« Each linear mapo; is associated uniquely with one binary number from final interval.

symbols;. The mapping, — s; is defined arbitrarily Compression Efficiency and Equivalence

but one-one relationship must hold.
Arithmetic coding has been shown to be achieve Shan-

o The valid-input width of each mapof), given by
(end), — begy) is proportional to a probability of oc- non’s limit on compression efficiency asymptotically. The

k=1
o The mapy; is one-one and onto i.e.:

same result holds true for coding using piecewise linearsmap Figure 3(a) shows the basic architecture for coding using
because of the following observations: chaotic maps. The control unit receives the input bit stream
The width of final interval is given b)ﬂ'[f’:1 f"], where which is passed on to the chaotic map Iterator (CMI). The
fi is the probability of occurance of symbal, andn;, control unit passes the bitstream, one symbol per cycle
is the frequency of occurance of symbsel. This value (unless in the case of multiple symbol encoding, which will
asymptotically approaches Shannon’s value for maximunie discussed later). For encoding, the initial intervalspds
entropy []. It can be observed that while CAC scales thé¢o CMI is [0,1), which is transmitted as the beginning,
codeword or initial value to map them to the intervalsand end £,) interval values. Both the intervals are then
corresponding to different symbols, the standard aritiunet iterated over CMI (using two instances of CMI), and then
coder keeps the codeword constant and instead scales ttihe output is sorted so tha, < E,. If the difference
map in every iteration to find the symbol. It is immaterial - (D,, = E, — D,,) is lower than a threshold, we need to
whether one scales the map to suit the codeword or scalegnormalize the encoder. The renormalization procedure fo
the codeword to suit the map - the relative ratios remain tharithmetic coding has been discussed in [14]. A similar

same, hence output of both procedures is the same. extension of renormalization procedure may be possible for
_ _) chaotic maps. But, for the evaluation designs considered in
Use of Chaotic Maps in Encryption this work, we have considered 64 bit encoder without any

[12], [7] present two different scenarios of using chaoticfénormalization procedure. _ _
maps for arithmetic encryption. The first case uses N-ary IN case of decoding, Control Unit (CU) transmits the
arithmetic coding and has high cryptographic strength anqued_ symbol into CMI, which is then iterated over Piece-
implementation cost, while the second case uses binaise linear map and reported back to CU. The CU makes
arithmetic coding to encrypt data with low computational® comparison with chaotic map indicated by the key and
resources. In both the cases, the choice of multiple piec&UtPuts a single bit output. .
wise linear maps to encode the input symbol is used for key CM! has a multiplier and an adder to perform chaotic
generation. This property is used for encryption, for witho 'tération. The internal d.etfsuls. of this operation are given
knowledge of the correct map, an adversary cannot decod@ Figure 3(b). The multiplication and addition coefficient

the input stream correctly. are obtained from a look-up table/ RAM collating the input
symbol, key value and probability value as the input address
Applications The Look-ed up value or a word is demultiplexed to obtain

- . he multiplication an ition fficients. Thi i
The CAC can be used as a joint compressmn—cumJE e multiplication and addition coefficients S opticanc

. : . ! . work fine for at most binary case, and for the case where
encryption technique for data encryption. It is particiylar y e

beneficial for data-intensive task h timedi value is limited to fixed precision, say 8 bits. Such fixed pre-
eneticial Tor data-Intensive 1asks such as muilimedia €ng;q;) approximations have been introduced in CABAC [11],
cryption and compression and can be integrated into th@

. . . owever it leads to approximation of results. Alternatyel
j?ggar&gggoeggmpressmn algorithms such as JPEG20Q & can use a multiplexer which can implement look-up using

CAC b d for full lecti i fphysical circuits to compute the return values. The second
.~ can be used for 1ull or selective encryption o approach has been implemented in this work, as it allows
multimedia data. For full encryption, the entire volume of

. . . i more flexibility in design and accuracy in computation.
multimedia c_iata_ is passed through BCAC (I_3|nary CAC) For implementation, the input and output intervals to the
encoder while in case of selective encryption only theC

. haotic Map Iterator are represented in 64 fixed point (0 bits
important parts of data are passed through BCAC encode
If we reveal the first K bits of the key publicly, then a part of |hteger and 64 bits fraction, shortly I(F64) arithmetic. The

the bitstream can be decoded correctly while decoding thgymbOI probability has been quantizedtdits (I.F0.8).
entire bitstream will require knowledge of the entire key.Binary Arithmetic Coder (BAC) architecture

Thus, BCAC can be used to provide conditional access to

the multimedia content. To implement BAC in proposed architecture, we target a

design with processes 1 symbol (1 bit in this case) per cycle.
: The CMI has 1 bit symbol input, 8 bit symbol probability
4. Hardware architecture and no bits for choice of chaotic map (there is only one
In this section, we discuss the hardware architecture fomap in this case). The 9 bit lookup can be implemented
arithmetic coding using chaotic maps, and N-ary chaotiasing a 512 words RAM or Look-up Table. One word is 16
arithmetic encryption. bits - 8 bits each for multiplication and addition coeffidien
The chaotic encoder operation inverse inverse mapping dilternatively, this can be implemented using a multiplexer
interval [0,1) on the chaotic map according to input symboland hardware adder/ subtracter to obtain the coefficients.
For binary arithmetic coder, we have a fixed map to beThe later approach was used for BAC implementation. The
iterated in each cycle. design was synthesized in Xilinx Virtex-6 XC6VLX75t

Begin and Coefficients

End Look-up
Intervals
: S s
Symbol Control I€ Chaotic Look- < P
Bitstream —’"“Uh'i{' o Map up >
N Iterator(s) Table
T)
Symbol probability,
key value
CLK ()

@

Fig. 3: Generalized Hardware Architecture for Chaotic Mdp$ Generalized architecture and (b) Circuit details foa@tic
map lterator

FPGA using Xilinx ISE Design Suite 12.0 environment. Themultiplier such as square root multiplier, reconfigurable
same target FPGA, which is one of the low end Virtex-6constant multipliers etc. The hardware requirements are ba
family member is used in all synthesis/ translate/ map/eplacsically dependent on size of Look-up logic which increases
and routes. exponentially with increase of N. The throughput of this
The two 64x8 bit multiplications are mapped in hardwareimplementation is 1 bit per cycle with a 510 MHz clock,
into 10 DSP48E slices. A slice usage of 302 was obtainede. 510 Mbps. To consider the area effectiveness of this
and the design achieved a clock frequency of 510 MHz, wittdesign, we consider throughput per slice, with the second
one symbol per clock cycle. The optimized implementationmplementation where we implement multiplication in LUTs
of multiplication, using carry-chains of FPGA fabric was rather than using DSP48EL1 slices present in device. The
synthesized to remove the use of DSP slices. This implemethroughput/ slice for this design is obtained as 322 Khéslic
tation requires 1585 slices and achieves a clock frequency
of 500 MHz. The throughput of this implementation is 1 bit Cost of encryption

per cycle with a 500 MHz clock, i.e. 500 Mbps. .) .
Comparing the BAC and BCAC architectures, we obtain

Binary Chaotic Arithmetic Coder and Encryp- a zero latency, same throughput and little hardware overhea
: : (20 slice LUTSs) in implementing this encryption scheme
tion (BCAC) architecture against AES or other schemes which have significant over-

The architecture for BCAC differs from binary arithmetic head. For instance,Chang et al. [26] reports AES implemen-
coder in the sense that, the choice of chaotic map is madation using 156 slices, 2 Block RAMs to obtain a lower
based on a key value, and is not precomputed. For thigjock of 306 MHz.
implementation, the CMI has 1 bit symbol input, 8 bit T¢ jncrease the throughput per slice for a bitstream, we
symbol probability and 3 bits for choice of chaotic map (forjntuitively consider the dimension of increasing the numbe
binary caseV = 2, hence number of different chaotic maps of symbols in dictionary used in arithmetic coding. For

is N2V = 8. The 12 bit lookup can be implemented usingexample - considering 3 or 4 symbols in the dictionary.
a 512 words RAM or Look-up Table, with 16 bits word.

Alternatively, we u;ed 8-to-1 multiplexer.tp obtain the ffioe N-ary Chaotic Arithmetic Coder and Encryp-
cients corresponding to a key, each cefficient being gestrat .. .
based on value in Table 1 in [7]. The implementation onthn (NCAC) coding
target FPGA gave a clock frequency of 500 MHz, utilizing N-ary arithmetic encryption using the entire possible
321 slices and 10 DSP48E1 slices (which have optimize#ley space quickly turns out-of-bounds for a FPGA device.
multiplier and accumulator operation implemented in VLSI) Moving from 2 to 3 piece-wise linear maps, we have a
Mapping these multiplication to FPGA logic increased thetremendous increase in key-size. We implemented tri-nary
slice usage to 1474, without any change in achievable clockAC coder in FPGA device to obtain a device usage of
frequency. 492 slices and 10 DSP48E slices (1800 slices without
The BCAC decoder hardware utilization was 173 sliceDSP slices), but the achievable clock frequency dropped
LUT with 5 DSP slices (806 slice LUTs with LUT mul- to 127 MHz. The tri-nary decoder hardware utilization was
tiplier) with a clock frequency of 510 MHz (500 MHz). 419 slice LUT with 5 DSP slices (1052 slice LUTs with
The 64x8 bit multiplier is implemented by ISE into 5 LUT multiplier) with a clock frequency of 442 MHz (369
DSP slices. However, the same multiplier can be optimizediHz). The hardware requirements are basically dependent
and implemented without hardware multipliers using otheion size of Look-up logic which increases exponentially with

7000 Multiple symbol per cycle arithmetic coding

Let us consider the case of arithmetic coding where we
want to encode two symbols in a single iteration of chaotic

6000

s000 ::':f;y map. In this case, the chaotic map will spit into multiple

4000 4-ary (four instead of two) piece-wise maps. Arithmetic coding
with encryption is still going to suffer with band-width

3000 expansion, but we observe that the bandwidth expansion is

S5 much less (or order 02V) instead of \2. Consider, for
example the case where we want to encode two symbols

1000 - together (‘01 instead of ‘0’ and ‘1’ in two separate itera-

o [& n tions) using BAC. In this case, the resultant chaotic itarat
Stices DSPASE slices Clock Througnputsice il have 4 (instead of 2) piece-wise linear maps and their

precision of implementation will be increased (16 instead o

Fig. 4: N-ary arithmetic coding and encryption architeegir 8 bits). This analysis can be extended to three, four or more
Comparative performance. The # of slices, # of DSP slicesymbols.
(x100), clock frequency (MHz) and throughput per slice In this case, the increase is caused by increase in fixed
(x1000) are reported in the figure. It can be observed thapoint precision of coefficients (and hence multipliers and
increasing the size of dictionary significantly reduces theadders), and increase in number of piece-wise maps. How-
throughput. The figure is drawn by scaling the through-ever, against the case of MCAC where there was a band-
put/slice legend to consider the fact that a 4 symbol dicwidth explosion due to increase in key size, we observe a
tionary will require half the words as a 2 symbol dictionary.considerable different result of implementation on Virex
device. These results are reported in Figure 5. The regalts a
interesting to note, because contrasting with the traufitio
notion of one-symbol per cycle, we show that we can scale
upto 4 symbols per cycle and achieve a higher throughput
per slice. As we go from 2 to 4 case, we observe a increase
in throughput which is then checked by the exponential

A simple way to restrict this bandwidth explosion is to increase in hardware resources caused by multiple sym-
used the algorithm for encryption proposed in [12]. Theypols use. This value of 4 cannot be a device constraint
restrict the keyspace and instead use only a small fragme(yestrictions due to finite area or size of device) because
of keys from the entire range, for encryption. However,the pure LUT mapping based implementation requires only
the approach presented in [12] has other computationally5480 slices out of 43000 slices present in target xc6vls75
inefficient parts. device. The highest throughput achievable is 431 Kbits per

The results are shown in Figure 4. The number of slice?liCé for 4 symbols case. _ . .
LUTSs is reported directly, number of DSP slices is scaled For the ;ake of brevity, we havg restricted our discussion
directy and clock frequency is measured in MHz. Thell last sections to NCAC and multiple symbol BAC encoder,
throughput comparison is tricky because using a 4-symbdfut the same trend follows for the decoder also.
dictionary (4-ary coding) will lead to reduced bitstream)

(around 50% reduction) than the bitstream generated b$. Conclusion

2-symbol dictionary. Thus, to compare these values on a
graph, we multiply each throughput witlv value (2 for
binary) to indicate relative throughput. It can be observe
that increasing the size of dictionary significantly redutiee
throughput, even after such considerations due to expiahent
increase in hardware usage for key implementation.

increase of N ¥|!2"V), making it infeasible to scale-up the
throughput/slice.

In this paper, we presented architecture for simultaneous
oding and encryption using chaotic maps. After presenting
he hardware requirements and computations involved in
chaotic maps, we mapped these designs into a Virtex-6
FPGA to obtain a performance analysis on real hardware.
We investigated the key-explosion problem which avoided

Although our experiment to scale to multiple-symbol the implementation of simultaneous coding and encryption
dictionary failed, the reason is not the same as for trashifio using larger dictionaries. However, we found that the hard-
designs for arithmetic coding [11]. Rather, the key exmosi ware resource explosion is not much in case of multiple
is the main reason for such limitations. We next consider ineharacter coding using BAC (indicating 5 symbols be en-
creasing the system throughput by encoding multiple binargoded simultaneously). This work is one of the earliest
symbols in a single pass. This approach is different thahardware implementation of chaotic maps, first reported
the previous approach in the sense that multiple probgbilitimplementation of chaotic maps for simultaneous coding and
values are not involved. encryption. It achieves encryption at insignificant hardwa

600

500
400 4
300 -
200 -

100

0 m

Slices DSP48E slices

Clock Throughput/ slice

Fig. 5: Multiple symbols per cycle (BAC): Comparative
performance. The # of slices, # of DSP slices (x10), clock13]
frequency (MHz) and throughput per slice (x1000) are
reported in the figure. It can be observed that 4 symbolgi4
per cycle achieve highest throughput before LUT explosion
due to increased precision and maps.

(8]

19

(20]

(11]

[12]

(15]

cost, against use of encryption ciphers such as AES which6l
require separate modules for encryption operation.

.]
We are looking for, and encourage other readers also for

future work in two directions:
1) Looking for ways to solve key-explosion problem using

circuit level techniques.

[17

(18]

2) Incorporating re-normalization and context to this en{1°!

coder, so that it can be added to CABAC or other
encoders.

Acknowledgement

This research is supported by the National Science Fouri22]
dation under Grant #1019343 to the Computing Research
Association for the ClFellows Project.

References

(1]

(2]

(3]

(4]

(5]

6]
(7]

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of thelabse
video coding extension of the H. 264/AVC standad&EE Transac-
tions on Circuits and Systems for Video Technology. 17, no. 9,
pp. 1103-1120, 2007.

G. Langdon and J. Rissanen, “Compression of black-whitages
with arithmetic coding,"EEE Trans. Communicationsol. 29, no. 6,
pp. 858-867, Jun 1981.

M. Luca, A. Serbanescu, S. Azou, and G. Burel, “A new corspien
method using a chaotic symbolic approach,Proc. IEEE Commun.
Conf Citeseer, 2004, pp. 3-5.

N. Nagaraj, P. Vaidya, and K. Bhat, “Arithmetic coding ashan-
linear dynamical systemCommunications in Nonlinear Science and
Numerical Simulationvol. 14, no. 4, pp. 1013-1020, 2009.

M. Grangetto, E. Magli, and G. Olmo, “Multimedia selectiemn-
cryption by means of randomized arithmetic codintEEE Trans.
Multimedia vol. 8, no. 5, pp. 905-917, Oct. 2006.

H. Kim, J. Wen, and J. Villasenor, “Secure arithmetic caginEEE
Trans. Signal Processingol. 55, no. 5, pp. 2263-2272, May 2007.
A. Pande, J. Zambreno, and P. Mohapatra, “Joint video ceagiwn
and encryption using arithmetic coding and chaos,JEEE Interna-
tional Conference on Internet Multimedia Systems Archirecand
Application 2010.

(20]

(21]

(23]

[24]

[25]

(26]

R. Bose and S. Pathak, “A novel compression and encrysitireme
using variable model arithmetic coding and coupled chaotstesy,”
IEEE Trans. Circuits and Systemsvbl. 53, no. 4, pp. 848-857, April
2006.

G. Jakimoski and K. Subbalakshmi, “Cryptanalysis of sometime}
dia encryption schemeslEEE Trans. Multimediavol. 10, no. 3, pp.
330-338, April 2008.

T. Stojanovski and L. Kocarev, “Chaos-based random remb
generators-part I: analysis [cryptographyircuits and Systems I:
Fundamental Theory and Applications, IEEE Transactionsvoh 48,
no. 3, pp. 281-288, 2002.

D. Marpe, H. Schwarz, G. Blattermann, G. Heising, and TedV
“Context-based adaptive binary arithmetic coding in the6th/avc
video compression standardEEE Trans. Circuits and Systems for
Video Technologyvol. 13, pp. 620-636, 2003.

K.-W. Wong, Q. Lin, and J. Chen, “Simultaneous arithmetozling
and encryption using chaotic mapsiEEE Trans. Circuits and
Systemsvol. 57, pp. 146-150, February 2010. [Online]. Available:
http://dx.doi.org/10.1109/TCSI1.2010.2040315

S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stregpm&i and
the usage in video protectionChaos, Solitons & Fractalsvol. 34,
no. 3, pp. 851-859, 2007.

A. Moffat, R. Neal, and I. Witten, “Arithmetic coding résited,” ACM
Transactions on Information Systems (TOM)I. 16, no. 3, pp. 256—
294, 1998.

G. Cormack and R. MORSPOOL, “Algorithms for adaptive Hiuéin
codes,”Information Processing Lettersol. 18, no. 3, pp. 159-165,
1984.

J. Vitter, “Design and analysis of dynamic Huffman cotielmurnal
of the ACM (JACM)vol. 34, no. 4, pp. 825-845, 1987.

A. Moffat, N. Sharman, |. Witten, and T. Bell, “An empiricaval-
uation of coding methods for multi-symbol alphabetsformation
Processing & Managemenvtol. 30, no. 6, pp. 791-804, 1994.

I. Witten, R. Neal, and J. Cleary, “Arithmetic coding fdata com-
pression,"Communications of the ACMol. 30, no. 6, pp. 520-540,
1987.

P. Howard and J. Vitter, “Analysis of arithmetic codingrfdata
compression,Information Processing & Managemenbl. 28, no. 6,
pp. 749-763, 1992.

G. Langdon, “An introduction to arithmetic codingBM Journal of
Research and Developmenbl. 28, no. 2, pp. 135-149, 1984.

R. Osorio and J. Bruguera, “Arithmetic coding architeet for H.
264/AVC CABAC compression system,” 2004.

T. Chuang, Y. Chen, Y. Chen, S. Chien, and L. Chen, “Awtture
Design of Fine Grain Quality Scalable Encoder with CABAC Fbr
264/AVC Scalable ExtensionJournal of Signal Processing Systems
vol. 60, no. 3, pp. 363-375, 2010.

C. Lo, S. Tsai, and M. Shieh, “Reconfigurable architeetfior entropy
decoding and inverse transform in H. 264€Cbnsumer Electronics,
IEEE Transactions onvol. 56, no. 3, pp. 1670-1676, 2010.

T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. VignplfLow-
hardware complexity prbgs based on a piecewise-linear ichaaip,”
Circuits and Systems |l: Express Briefs, IEEE Transactmmwol. 53,
no. 5, pp. 329 — 333, May 2006.

A. Pande and J. Zambreno, “Design and hardware implenientat
of a chaotic encryption scheme for real-time embedded systems,”
Signal Processing and Communications (SPCOM), 2010 |atemal
Conference on IEEE, 2010, pp. 1-5.

C.-J. Chang, C.-W. Huang, K.-H. Chang, Y.-C. Chen, anCHsieh,
“High throughput 32-bit aes implementation in fpga,”@ircuits and
Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conferencé0on
2008.

