
A Proxy View of Quality of Domain Name Service
Lihua Yuan

ECE, UC Davis
lyuan@ece.ucdavis.edu

Krishna Kant
Intel Corporation, OR

krishna.kant@intel.com

Prasant Mohapatra
CS, UC Davis

prasant@cs.ucdavis.edu

Chen-Nee Chuah
ECE, UC Davis

chuah@ece.ucdavis.edu

Abstract— The Domain Name System (DNS) provides a critical
service for the Internet – mapping of user-friendly domain names
to their respective IP addresses. Yet, there is no standard set
of metrics quantifying the Quality of Domain Name Service or
QoDNS, let alone a thorough evaluation of it. This paper attempts
to fill this gap from the perspective of a DNS proxy/cache,
which is the bridge between clients and authoritative servers.
We present an analytical model of DNS proxy operations that
offers insights into the design tradeoffs of DNS design and the
selection of critical DNS parameters. After validating our model
against simulation results, we extend it to study the impact of
DNS cache poisoning attacks and evaluate various DNS proposals
with respect to the QoDNS metrics. In particular, we compare
the performance of two newly proposed DNS security solutions:
one based on cryptography and one using collaborative overlays.

I. INTRODUCTION

The Domain Name System (DNS) is one of the most
valuable components in the Internet infrastructure. Almost all
applications, e.g. http, email and ftp, rely on DNS to resolve
human-friendly domain names to the corresponding machine-
friendly IP address prior to establishing connections. DNS
is also tasked to distribute information about mail exchange,
serve as public-key infrastructure, and provide dynamic load
distribution. Given this, the notion of quality of Domain Name
Service (QoDNS) is an important one, but currently there are
no metrics to quantify it, let alone evaluate it thoroughly.

In this paper, we define such a concept based on accuracy,
availability, latency and overhead of DNS service. Accuracy
and availability refer to the ability to supply up-to-date and
correct DNS records to the client so that it can connect to
and only to the desired site. Since a successful DNS lookup
is required before a connection attempt, the latency incurred
will be observed by every application, and in many cases,
contributes a significant portion of it [1].

The DNS consists of a hierarchy of authoritative servers
(Section II-A) and a large number of proxy servers that cache
the resource records, thereby making the lookup more efficient
and scalable. We propose an analytical model that captures this
structure and provides estimates for QoDNS metrics.

A major area of current concern regarding DNS relates to
DNS cache poisoning attacks [2], where incorrect or malicious
records are injected into the DNS proxy. This not only results
in a potential denial of service (due to wrong IP address
provided) but can also be exploited as a foothold for more
harmful sub-attacks such as Man-In-The-Middle attacks [3]
or large-scale phishing attacks known as pharming [4]. The

current DNS protocol makes it surprisingly easy to inject
poisoned resource records and does not require compromising
the proxy servers themselves. Furthermore, the hierarchical
structure of DNS propagates the poison down the tree and
thereby can affect a large number of clients, as witnessed in
March 2005 [5]. Thus, capturing the impact of poisoning is a
crucial attribute for a useful QoDNS metric.

Currently, there are two classes of solutions proposed for
thwarting cache poisoning attacks in the DNS: (1) those based
on cryptography, e.g. public-key based DNS Security Exten-
sion (DNSSEC) [6] and its symmetric-key based variant, SK-
DNSSEC [7], and (2) those based on peer-to-peer cooperative
checking, e.g. Domain Name Cross referencing (DoX) [8].
We shall apply our QoDNS metric to evaluate both of these
alternatives.

The contributions of this paper are:
• We define a set of metrics to comprehensively evaluate

and compare QoDNS (Sec. III).
• We present an analytical model of DNS proxies for

quantitative evaluation of QoDNS (Sec. IV). Our model
can be used to determine the tradeoffs of key parameters
like TTL. In particular, we use it to study the impact of
the increasing popularity of Dynamic DNS (Sec. V).

• We use our model to compare existing solutions to thwart
DNS cache poisoning and provide insight into which
solution might be most appropriate in what situations.

The structure of the paper is as follows. Section II discusses
DNS structure and related work. In section III, we motivate the
definition of QoDNS, and in section IV we present analysis
of basic DNS from QoDNS perspective. Section V presents
some numerical results on standard DNS based on the model.
Section VI then discusses analysis of some DNS variants that
attempt to thwart DNS poisoning attacks. Finally, section VII
concludes the paper and discusses future work.

II. BACKGROUND AND RELATED WORK

A. DNS Structure
DNS is a hierarchically organized, distributed database

starting with records for top level domains (e.g., .com or .edu)
and extending down to a few levels. The fully-qualified domain
name, e.g. www.intel.com, describes a complete path from
the root node to this node. Each domain is associated with a
set of resource records (RRset), which contain information
about this domain or referrals to its sub-domains.

A DNS proxy can find the record for a node n by querying
the DNS server(s) listed in the Name Server (NS) record of

www.intel.com


its parent node A1(n). Since the RRset for the root node is
always available on every proxy as the root hint file, a DNS
proxy can find the RRset of any domain by starting from the
root, and recursively following the referrals. A DNS proxy
caches all such RRsets for the period of their TTL. The TTL
of a node is assigned by its authoritative server. To improve
performance and reduce overhead, the proxy searches its cache
for the best-matching record (BMR) and starts the recursive
lookup from there instead of the root node every time.

Figure 1 presents a simple state-machine model for various
states of a record (or RRset). Initially, the record is in un-
cached state indicated as U . The arrival of a query causes
the RRset to be cached (indicate by state C). The caching
holds for the TTL duration and then reverts to U state. If the
authoritative server (AS) of the record updates it while the
record is in cached state, the cached copy becomes obsolete
(O). Finally, if the query to AS by the proxy returns a poisoned
record, the record state becomes erroneous (E). Since the
proxy server itself has not been compromised, it can flush a
poison record when its TTL expires. However, the malicious
attacker can set TTL to the largest possible value (e.g., 7 days).
This paper assumes poisons are permanent (i.e., dotted arc
does not exist in the state machine).

A name lookup through the proxy server essentially consists
of two steps: best-matching and referral-following. We model
the best-matching algorithm as queries climbing up the DNS
tree. When a query to node n results in a cache miss, the
proxy needs to obtain the NS record of n from the parent node,
A1(n), to contact the AS. This is considered as an induced
query. An induced query to node A1(n), if it results again
in a cache miss, induces a query to its own parent node,
A2(n). This process iterates until a hit happens. The first
ancestor node with the correct cached information provides
the best-matching record (BMR). If the BMR is current, the
referral-following algorithm climbs back down level-by-level
by querying the servers listed in the NS records, until it reaches
node n. Records of nodes on the path from the BMR to n will
be cached during this process.

Because of the hierarchical nature of DNS, a poisoned
record can percolate down as illustrated in Figure 2. Assume
a query for gb.gov.au is best-matched to .au, which is
poisoned. The subsequent recursive queries cause gov.au
and gb.gov.au to inherit the poisoned (E) status of .au.
The TTL at each level could be set to a large value, thereby
making the poison both long lasting and widespread. Such a
scenario was observed on March 2005 [5] when the .com
entry was poisoned. This propagation mechanism offers an
amplification effect to the injected poison and makes high-
level nodes especially attractive to malicious attackers.

B. Related Work

Jung et al. [9] present a mathematical model for TTL-
based caching. They model query arrival with a renewal
process and derive cache hit/miss ratios. However, their model
ignores the hierarchical dependencies among objects in DNS
cache and implicitly assumes the objects stored in the cache

are independent of one another. Therefore, their model is
insufficient for understanding many aspects of DNS cache
including the impact of lower level TTL at higher levels, or
the propagation of cache poisoning down the hierarchy.

There are several works on modeling hierarchical
caches [10, 11]. They consider a layered deployment of Web
proxies, each with its own cache. The lower-layer proxies,
upon a cache miss, will forward the query to higher-layer ones.
Thus, cached objects in lower-layer caches is synchronized
with that in high-layer parent. In the case of DNS, the hierar-
chical dependency is internal, i.e. such hierarchy dependency
exists among DNS objects themselves contained in the same
cache.

Kolkman [12] measured the effects of deploying DNSSEC
on CPU, memory, and bandwidth consumption on authorita-
tive servers (as compared to standard DNS). Curtmola [13]
compared two DNSSEC variants – the IETF version using
public key cryptography and another using symmetric key.
Their approaches are to deploy the compared schemes on a
testbed and compare the performance.

TABLE I
SUMMARY OF SYMBOLS

Symb. Description Symb. Description
n A node in the DNS tree h(n) Level of node n
ni ith child of n ni,j jth child of ni

s(n) State of node n H Height of the DNS tree
X(n) Query arrival process of n T (n) TTL value of node n
W (n) Weight of n Y (n) Query miss process of n
M(n) Modification process of n Ai(n) i-level ancestor of n
Bi(n) Prob. of a query to n best-matched to Ai(n)

III. QODNS METRICS

In the following subsection, we provide a formal definition
of QoDNS based on these key aspects: accuracy, availability
and latency/overhead.

A. Accuracy of DNS Resolutions

A DNS client may receive inaccurate mappings for two
main reasons: (1) obsolete and (2) poisoned (or tampered)
records. DNS uses a “weak consistency” model wherein a
cached resource record is not flushed from the proxy cache un-
til the TTL expires, even if its master copy at the authoritative
service is updated in the mean time. As a result, clients may
receive obsolete (and incorrect) records. Since DNS records
are typically small, storage limitation is normally not an issue
(unlike web caches). Consequently, TTLs are generally set to
be fairly large and there is rarely a capacity based eviction of
the records. This situation tends to aggravate the problem of
obsolete records, leading to failed communication attempts.

Poison records could be injected into DNS cache by ex-
ploiting software or protocol vulnerabilities. The poisoned
records could specify a very large TTL to remain active for
a long time. Furthermore, any query from lower levels of the
hierarchy will propagate them further (to a much larger set of
nodes).

gb.gov.au
.au
gov.au
gb.gov.au
.au
.com


C

U

O

E
AS Update

Exp
ire

Cach
e

E
xp

ir
e

Poison

Expire

C: Current
U: Uncached
O: Obsolete
E: Erroneous

Fig. 1. State Transition Diagram

.C

.au
P

.nzC.sgC

.govU

.edu
C

.gb
U

.sa
C

.ips
U

1

2
3

4

5

6

7

8

Fig. 2. Illustration of Poison Propagation

While both poison records and obsolete records are in-
accurate, we must differentiate them since their causes and
consequence are quite different. In particular, poison records
can be considered more dangerous since they can be exploited
for further, more serious attacks.

B. Availability of DNS

DNS is a mission-critical system and it is important to
ensure the availability of its data to any querying client, even
under failures or malicious attacks. The distributed nature
of DNS coupled with caching by numerous local proxies
help make DNS service quite robust. For example, the data
replication provided by DNS proxies helped the DNS in-
frastructure survive the massive scale Distributed Denial-of-
Service (DoS) attack in October 2002 [14]. However, caching
can also negatively affect the availability. In particular, if the
desired record is uncached, but the BMR that the proxy finds
in its cache is obsolete, we have a referral failure and the DNS
resolution cannot continue unless the DNS client is configured
with other DNS proxies that can return accurate information.

It is important to note here if the RRset (that provides the
name to IP mapping to the client) is obsolete, this situation
will result in a application failure when the the client attempts
to use the IP address. This situation is covered by the accuracy
aspect (see section III-A), and is not an availability issue
for the DNS. In both cases, the TTL expiry and subsequent
retrieval of updated record from AS will fix the problem
without any administrative intervention.

Although overall availability of the DNS service (defined, as
usual, as the fraction of time the service remains responsive)
is a crucial parameter, we only concentrate on the obsolete
referral aspect of it in this paper. The reason for this choice
is that traditional availability enhancement techniques (e.g.,
hardware redundancy, hot swap, data replication, etc.) are well
studied in the literature.

C. DNS Lookup Latency and Overhead

A DNS lookup precedes almost every connection attempt.
Consequently, the latency incurred by DNS lookup will affect
the overall user-experienced latency. Early measurement re-
sults show that DNS lookup latency forms a significant part of
Web latency [1]. There are two components to overall latency:

1) Network Latency: This comes into play primarily on
misses from proxy or the DNS server hierarchy. The
client-to-proxy query/response latency is usually on a
local LAN and thus not significant. The iterative queries
through the DNS hierarchy could add substantial latency.

2) Processing Latency: This includes all aspects of local
processing at a server. This latency is typically small
but could become significant in special cases, e.g., when
using public key cryptography (e.g., DNSSEC) or as a
result of substantial imbalance in load distribution. We
ignore processing latency in our model.

Closely related to latency is the notion of overhead, which
too can be described in terms of network and processing
components. In particular, the network overhead refers to the
network traffic resulting from a given scheme. The WAN
traffic is of primary interest here and results from cache misses
at various levels of the DNS hierarchy. The computational
overhead can be measured using some suitable CPU related
metric (e.g., instructions/sec, cycles/sec, etc.). As with latency,
computational overhead is likely to be relevant only in some
specialized circumstances.

D. Definition of QoDNS

Based on the discussion above, we define QoDNS as a
quintuplet < AO,AP ,VO,LN ,OM > where
AO Probability that the service provides an obsolete resource

record.
AP Probability that the service provides a poison resource

record. If the proxy is not under malicious attack, this
metric is always zero.

VO Overall unavailability of DNS service under the assump-
tion of perfect node level availability (i.e., we exclude
the impact of node failures, as discussed earlier).

LN Overall query-response latency for DNS service. Except
in cases where computation latency may be substantial,
this metric is dominated by the number of round-trip
communications over the Internet.

OM Network overhead of DNS service, measured as average
number of bytes of network traffic per query.

IV. ANALYSIS OF STANDARD DNS

First, we present the analytical model of standard DNS.



A. Recursive Model for Query Arrival Characteristics

DNS queries typically arrive for leaf nodes and queries
to non-leaf nodes are dominated by induced queries. While
query arrival characteristics for leaf nodes are easy to measure
at proxy servers, query characteristics for non-leaf nodes
depend on the child nodes, their TTL values, and their query
characteristics. Therefore, we propose a recursive model to
derive the query arrival characteristics of non-leaf nodes in
the DNS hierarchy based on information readily available,
i.e. TTL values and arrival characteristics for leaf nodes.

X(n1)

Y (n1)

n1

· · ·
X(ni)

Y (ni)

ni

n

X(n)

h

h− 1

Fig. 3. Bottom-Up Recursion Model

Figure 3 shows how a query to node n results in a cache
miss if n is not cached. This will cause node n to hold the
new cached information for TTL and the next miss happens
for the first query arriving after the TTL expires. Therefore,
the characteristics of the cache miss process, Y (n), can be
determined if the query arrival process, X(n), and the TTL
value is known. A cache miss at a node leads to an induced
query at its parent node. For a non-leaf node n, X(n) is the
superposition of the cache miss process of all its child nodes.
Following such a model, we can recursively determine the
query arrival process of every non-leaf node from bottom-up.

X1 X2 Xj−1 Xj

T XR

Y

Fig. 4. Relationship Between Arrival and Miss Process

Let N denote the maximum number of inter-arrival times
that can fit the period T . Let Xj denote the sum of j inter-
arrival time of X (Xj =

∑j
i=1 Xi). As depicted in Figure 4,

the inter-miss time Y is given by:

P{Y = y} =
∞∑

j=1

P{Xj = y}P{N = j}

fY (y) =
∞∑

j=1

P{N = j}fXj (y)

(1)

By definition, P{N < j} = P{Xj > T}. Therefore,
P{N = j} = P{Xj+1 > T} − P{Xj > T}. Thus, for a
given value of T , P{N = j} can be computed recursively
up to a certain limit, and then approximated analytically via
Gaussian distribution. Furthermore, the Laplace transform of
fY (y), which is denoted as φY (s), can be determined as in

Eq. 2. From here, estimating the first few moments of Y is
straightforward though tedious.

φY (s) =
∞∑

j=1

P{N = j} [φX(s)]j (2)

Let XR denote the remaining time before the next arrival
after TTL expiration. Then Y = T + XR. Therefore, fY (y)
can be expressed as fY (y) = fXR

(y− T ), which is the TTL-
shifted version of fXR

. If the arrival process is Poisson, both X
and XR have the same exponential distribution and determine
the distribution of Y is straightforward.

For a non-leaf node n, the arrival process is not known
directly. Assume a non-leaf node n with K children, and
denote ni the ith child of n (1 ≤ i ≤ K). Let X(n)i denote
the time to next query to n given that the last query came
from its ith child. Denote Y (ni) the miss process from the ith
child. Clearly, X(ni) is the minimum of inter-query time of
child i and the residual times (YR) of all other nodes, i.e.,

P{X(ni) > y} = P{Y (ni) > y}
K∏

j=1
j 6=i

P{YR(nj) > y} (3)

Based on Eq. 3, and considering that there are K children,
the collective arrival process to the parent node n, X(n), has
the following inter-arrival time distribution:

P{Z > y} =
K∑

i=1

P{Y (ni) > y} · λi

λ

K∏
j=1
j 6=i

P{YR(nj) > y}

where λi =
1

E[Y (ni)]
and λ =

∑K
i=1 λi. Now to express the

above in transform space, products turn into convolutions, i.e.,

1− φZk
(s) = (1− φYk

(s))⊗
K⊗

j=1
n 6=k

1− φYR(nj)(s)
s

(4)

B. Computational Issues and Estimation

The calculations proposed above are cumbersome since
they require actual distributions instead of just the moments.
Furthermore, operating in the transform space is ruled out
because of the required convolutions. Finally, it is not possible
to do recursion over multiple levels unless X(A1(n)) has the
same form as X(n). Although one could evaluate all equations
numerically, a symbolic computation is more efficient and
insightful.

If X is a Poisson process with average rate of λ, then XR

is the residual time with the same distribution as X because
of the memoryless property of Poisson process. The density
function of Y is the TTL-shifted version of fX , as in Eq. 5
in which δ is the step function.

fY (y) = fX(x− TTL) = δ(t− TTL) λe−λ (t−TTL) (5)

Note that this query miss process at one node has the same
characteristics as the output of an M/D/1/1 queue. If the
parent node has a large number of child nodes, the collective
arrival process can be estimated by a Poisson process with a



mean equals to the sum of all arrivals (Eq. 6). This is based
on the similar observation as Jackson’s Theorem [15].

λ′X = λZ =
K∑

i=1

1
T (N[i]) + 1

λi

(6)

C. Stationary State Properties

In the earlier parts of this section, we presented a method to
derive the query arrival process (X(n)) of any node n in the
DNS hierarchy given the query arrival processes of leaf nodes.
Coupled with additional knowledge about the TTL value T (n)
and the modification process M(n), one can find the stationary
state property of node n, i.e. the probability of a node begin
observed to be cached, obsolete or uncached.

T
XR

MR
TD

C O U

Fig. 5. Stationary State Properties

We study the stationary state distribution of a node based
on the observation on any given store-and-flush cycle, as
depicted in Figure 5. The expected length of a store-and-flush
cycle is T + E[XR] where XR is the remaining time of the
arrival of next query when the TTL expires. From this, the
probabilities of finding node n in states U , C or O can be
derived rather easily by assuming that the modification process
is independent of the query arrival process (details omitted due
to lack of space). The results are:

P{s(n) = U} =
E[XR]

T + E[XR]
(7)

P{s(n) = C} =
E[MR] ·P{MR ≤ T}

T + E[XR]
(8)

P{s(n) = O} = 1−P{s(n) = U} −P{s(n) = C} (9)

The main difficulty in these equations is the estimation of
XR which is not the normal residual life, and can be quite
difficult to compute. For Poisson arrivals, XR, of course,
has the same distribution as the inter-arrival time, and the
equations can be evaluated easily.

D. Evaluation of Performance Metrics

If a proxy server is not under attack, AP is always zero.
Therefore, we defer the discussion on AP to Section VI-A.

Before we proceed to determine the QoDNS metrics, it is
important to note that all of the QoDNS metrics are closely
related to the state of the best-matching record. A query to n
will be best-matched to its i-th level higher ancestor if itself
and all its ancestors before Ai(n) are uncached. Therefore,
we define Bi(n) as the probability that for a query to node n
remains unmatched until level i (Eq. 10).

Bi(n) =
i∏

j=0

P{s(Aj(n)) = U} (10)

The overall probability of lookup results can be determined
by a weighted-average of the above equations among all leaf
nodes. We defined the weight of a leaf node W (n) as:

W (n) =
X(n)∑

i∈leaf nodes X(i)
(11)

LN =
∑

n∈leaf

W (n) · i ·RTT ·P{s(Ai(n)) = C} ·Bi(n) (12)

1) Accuracy: If a queried node is present in cache but is
obsolete, an obsolete record will be served to client. Therefore,
the AO metric can be determined as the weighted average of
the probability of leaf nodes being obsolete:

AO =
∑

n∈leaf

W (n) ·P{s(n) = O} (13)

2) Unavailability: If the BMR is obsolete, the proxy will
not be able to follow the delegation to retrieve the queried
node, resulting in a lookup failure. Hence, VO can be evaluated
as the weighted average of the probability of hitting an
obsolete BMR:

VO =
∑

n∈leaf

W (n) ·
h∑

i=1

P{s(Ai(n)) = O} ·Bi(n) (14)

3) Overhead: If the BMR contains a current record, the
overhead incurred by the query is proportional to the num-
ber of external lookups generated. However, if the BMR is
obsolete, the query to the remote server will timeout and the
proxy server will retransmit for Ret times. The actual number
retransmits depends on the implementation. We assume Ret =
3, which is the default of BIND. Equation 15 presents the
average overhead incurred by queries to n. The weighted
average of OM (n) is the average per-query overhead observed
by the proxy:

OM (n) =
h∑

i=1

Ret ·P{s(Ai(n)) = O} ·Bi(n)

+
h∑

i=1

i ·P{s(Ai(n)) = C}) ·Bi(n) (15)

OM =
∑

n∈leaf

W (n) · OM (n) (16)

4) Latency: The latency incurred by successful lookups
(lookup failures have been accounted in VO) is proportional
to the number of external servers the proxy needs to contact
to fulfill the query.

E. Validation of Analytic Results

In this section, we validate our analytic results obtained
above against simulations that faithfully mimic DNS lookup
mechanisms.

It can be noted that the stationary state probabilities in
Equations (7-9) are fundamental to our analysis. As a result, it
is important to see how these probabilities compare against our
simulations, which emulate the actual DNS tree behavior with
random query arrivals following a Poisson process. Figure 6
shows that the analysis and simulation results agree well in



10-1 100 101

λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P
ro

b
a
b
il
it
y
 %

cached
uncached
obsolete

Fig. 6. Validation of Stationary State Properties

10-1 100 101

λ

10-2

10-1

P
ro

b
a
b
il
it
y
 %

OA

OV

MO

NL

Fig. 7. Validation of QoNS metrics

10-1 100 101

λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
a
b
il
it
y
 %

λα/1=β,909.0=α

cached
uncached
obsolete

Fig. 8. Validation on Gamma Distribution

all cases. The x-axis plots the query arrival rate and y-axis
shows the probabilities of three events: cached, uncached,
and obsolete. The midpoints and ranges shown are for 100
simulation runs in each case.

Figure 7 compares the QoDNS metrics obtained from the
analytical models and simulations as a function of arrival
rate. The continuous lines are generated by the analytical
models and the points show the average values from the
simulations. Figure 7 verifies that the estimated QoDNS values
using Equations 10-12 (assuming steady-state) provide good
estimate for the values observed from the actual simulations.

The above results are based on Poisson arrival process.
In reality, the arrival process may not be quite Poisson, but
the analysis of this case becomes quite challenging. On the
other hand, the superposition of a large number of non-
Poisson processes should tend towards Poisson. This calls for
a robustness check of the analytic results based on Poisson
assumptions. Figure 8 plots analytical results based on Poisson
arrivals against simulation results w/ non-Poisson arrivals
as a function of arrival rate. We chose the simulation inter-
arrival time as gamma distributed with shape parameter (α) of
0.909. Since errors are likely to be larger when coefficient of
variation (CVAR) exceeds 1, we chose α < 1 (CVAR =1/

√
α

for gamma distribution). Figure 8 shows that the agreement
remains very good except when λ (arrival rate) becomes large.
This is to be expected – if the number of superimposed
processes is held constant, an increase in arrival rates of
individual processes will move the superimposed process away
from the Poisson process.

After verifying the correctness and applicability of our
analytical model, we use it to study the performance of
standard and dynamic DNS in the following section.

V. STUDY OF STANDARD DNS

We construct the DNS hierarchy based on the following
structures: D(H,N), a deterministic DNS tree of H-level with
every non-leaf node has exactly N children; R(H,A, B), a
random H-level tree with the non-leaf nodes have i children,
where i is uniformly distributed between A and B. Queries
arrive at the DNS proxy following a Poisson process with
rate λ. The popularity of the leaf nodes follows one of the
following models: E(λ), all leaf nodes are equally popular
and queries arrivals are independent, identically distributed
among all leaf nodes. This is the most straightforward case.

Another model is Z(γ, λ): the popularity of leaf nodes follows
a Zipf-distribution with parameter γ. A recent survey by Jung
et al. [16] shows that, similar to Web objects, domain name
objects also follows Zipf distribution.

Due to space limitation, the following discussions use
D(3, 20) with equal popularity. But our results are similarly
applicable to other cases.

A. Impact of TTL

The TTL values of RRsets presents one important design
option for domain administrators. To understand the realistic
TTL settings of the Internet, we collected 2.7 million unique
FQDN based on the directory listing at dmoz.org [17]. For
each unique node (including leaf node, www.intel.com.
and non-leaf node e.g. intel.com. and com.), we found
its authoritative servers and queried them directly for its TTL
value. From Figure 9, several easy-to-remember numbers,
e.g. one, two hours or days, dominate the choice of TTL val-
ues. This suggests that administrators may not have attempted
to optimize the TTL settings for their operational conditions.

In Figure 10, we vary the TTL value of all nodes in the DNS
tree and study the impact on various QoDNS metrics. When
there are no modifications, increasing the TTL value reduces
lookup overhead and does not cause any failures. However,
with moderate modifications (λm = 0.01), a large TTL will
increase DNS failures significantly. A lookup failure caused by
obsolete referrals (OR) can cause more overhead than a cache
miss. When the modifications are frequent (λm = 0.1), the
additional overhead caused by lookup failures could outweigh
the reduced overhead by larger TTL value. Therefore, an
administrator should choose the TTL carefully based on the
tradeoff between overhead and lookup failures.

B. Is Dynamic DNS Bad?

Dynamic DNS (DDNS) [18] is a server-side mechanism to
alias a dynamic IP address to a static host name. In order to
cope with the large modification rate, the server has to set a
significantly smaller TTL value (in the order of minutes) so
that proxies will not cache the records too long and replied
obsolete records to clients. This lead to a natural question
on whether the increasing deployment of DDNS will cause
significant amount of overhead to the proxies and the servers.

In Figure 11, we vary the TTL values of leaf nodes while
keeping the TTL value of non-leaf nodes constant. This

www.intel.com.
intel.com.
com.


5m 10 30 1hr 2 5 12 1D 2 3 67
0.0

0.2

0.4

0.6

0.8

1.0
Level 1
Level 2
Level 3
Level 4
Level 5

Fig. 9. Distribution of TTL Settings on the Internet

100 101

LTT

10-3

10-2

10-1

100

O
v
e
rh

e
a
d

/Q
e
u
ry

)02,3(G

Q 0.1=

100 1010.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

%
 F

a
ilu

re
s

m 0.0=
�

m 10.0=
�

m 1.0=
�

Fig. 10. Impact of TTL Settings

Fig. 11. Impact of Dynamic DNS Fig. 12. Traffic at Different Layers

imitates the behavior of deploying DDNS for end-host IP
address but name server themselves are stable. One can notice
that if the TTL value of leaf nodes (TL) are unduly large,
it can significantly increase the amount of obsolete records
served to clients. Therefore, the administrators have to set a
smaller TL in order to ensure accuracy (AO). When TL are
comparable with the TTL value of none-leave nodes (TNL),
the overhead grows with the reduced TL. However, when TL

is significantly smaller than TNL, further reducing TL does
not increase overhead significantly.

Figure 12 looks at message overhead for nodes at different
layers. The message overhead for layer 3 nodes increases
significantly if a smaller TL is used. It confirms that adminis-
trators do need to plan their server/bandwidth capacity when
deploying DDNS. However, going upwards in the hierarchy,
the impact of a smaller TL diminishes. The effect of deploying
DDNS is local and has a limited global impact.

VI. STUDY OF CACHE POISONING AND SOLUTIONS

Next we extend the analytical model to analyze the cache
poisoning propagation in the current DNS. We then compare
some proposals – namely DNSSEC and DoX– designed to
deal with these attacks.

A. Poison Propagation in Regular DNS

Assume A1(n), the parent node of n, is poisoned at a
random time. Denote ∇(A1(n), n) the time taken for the
poison to propagate from A1(n) to n. The time of the next

query miss of n, which will be resolved by A1(n), is the time
when n gets poisoned. Therefore

∇(A1(n), n) = YR(n) (17)
in which YR(n) is the residual time of Y (n).

If the poison is injected at j-level higher parents Aj(n), the
time it takes for the poison to reach n is simply the sum of
propagation time at each level (Equation 18). The distribution
of this time ∇(Aj(n), n) can be found as the convolution
shown in Equation 19.

∇(Aj(n), n) =
j−1∑
i=0

∇(A1(n), n) (18)

f∇(Aj(n),n)(t) =
j−1⊗
i=0

f∇(Ai+1(n),Ai(n))(t) (19)

Once a leaf node is poisoned, it will serve poisonous records
to clients. With the poison propagating to more leaf nodes
over time, the probability of serving poison records to clients
(AP ) increases (Equation 20). After a long enough period, all
queries to the sub-tree rooted at the poison nodes will receive
poison responses.

AP (t) =
∑

n∈leaf

W (n)× F∇(Aj(n),n)(t) (20)

B. DNSSEC

DNS Security Extensions (DNSSEC) propose to use public-
key cryptography to authenticate resource records in order
to prevent cache poisoning attacks. DNSSEC augments DNS
with a few additional RR types so that a zone can be



cryptographically signed by authoritative servers and verified
resolvers. A signed zone includes a RRSIG RR which is the
signature signed by the private key of the zone owner. The
DNSKEY RR contains the corresponding public key, which
can be used to authenticate the RRset against the RRSIG. To
verify that the DNSKEY itself is not tempered, the Delegation
Signer (DS) RR at the parent node contains the public key to
verify the DNSKEY RR at child nodes. Given that resolvers
can retrieve the DNSKEY of the root node using some out-
of-band mechanism, there is an authentication chain starting
from the trusted root node to the RRSet of interest.

1) Accuracy and Availability: DNSSEC guarantees the
authenticity of a record with at same strength as public-
key cryptography used. However, key management remains
a challenging research issue for DNSSEC. The administrators
need to keep the private keys online if they were to regenerate
the signatures periodically. They also need to roll over to new
keys periodically to prevent the key being broken. However,
the security issues of DNSSEC are beyond the scope of this
paper. We assume that DNSSEC can prevent cache poison
from happening perfectly.

Even though DNSSEC guarantees the authenticity of a
record, it does not prevent or reduce inaccurate obsolete
records. This is because DNSSEC uses the same TTL-based
cache expiration mechanisms as standard DNS and hence does
not improve cache consistency. As a result, DNSSEC will
observe the same probability of serving obsolete records to
clients (AO) or the availability of DNS records.

2) Overhead and Latency: The additional overhead in-
troduced by DNSSEC mainly comes from zone inflation
caused by cryptography signatures and related keys (RRISG,
DNSKEY and DS RRs). RFC 3226 [19] suggests that these
signatures, depending on the cryptography algorithm used,
range from about 80 octets to 800 octets, with most signatures
below 200 octets. A practical bound for the overhead is that
standard DNS allows messages with at most 512 octets while
the DNSSEC standard recommends a limit of 4000 octets.

To determine the additional overhead of deploying DNSSEC
requires the knowledge of the size of original DNS data and
the cryptography algorithm used. We assume the original DNS
data is 512 octets (upper bound) and RSA/SHA-1 [20], which
is the only mandatory algorithm defined. We further assume
that the keys are 1024 bit long. In this case, the RRSIG,
DNSKEY and DS RRs jointly introduces at least about 300
octets overhead. This is about 60% additional overhead than
standard DNS.

The discussed zone inflation is however not expected to
significantly affect the latency observed by end client. This is
because the latency is dominated by RTT. Transmission time,
although it increases proportional to the data size, contributes
a negligible part to the total latency. On the other hand,
processing latency of DNSSEC could be significantly larger
than standard DNS.

C. DoX

Domain Name Cross Referencing (DoX) [8] is proposed as
an alternative solution to DNS cache poisoning attacks. Instead
of relying on cryptography for record authentication, proxy
servers in DoX form a peer-to-peer network (a DoX(M,N)
network has N proxies and each peering with M peers) to
verify the accuracy of DNS records. In addition, DoX peers
augment proxies with a verification cache to store verified
results so that re-verification is only needed when updates
happen. Furthermore, once a record update is verified, the peer
propagates such update information to other peers so that the
entire network is synchronized to the authoritative server.

After a record is retrieved through standard DNS, the DoX
peer compares it against its local verification cache and two
possible scenarios could result. First, if the record remains
unchanged, the response can be served to clients immediately.
Second, if there is a modification, proxy A sends a verification
request to M peers for verification. As long as at least one peer
is not poisoned, DoX can detect the poison and recover from
the attack by flushing the cache. If a verifying peer agrees
that an update is valid, it will propagate it to other peers so
that every peer in the network can “catch up” and update to
the current version. Consequently, an obsolete record will be
updated as soon as any one of the peers notices the change.

1) Accuracy and Availability: The DoX network detects
a modification (and updates to it) as soon as any one peer
detects it. Denote DoXO(n) the probability for a DoX peer
to have node n in obsolete status. This happens only if (1)
it is obsolete in local cache and (2) all other peers have
this node in either obsolete or uncached status. Therefore,
in a DoX(M,N) network, the probability of node n being
obsolete in a proxy cache is

P{sDoX(n) = O} = P{s(n) = O} · (1−P{s(n) = C})N−1

Fig. 13. DoX on Improving Accuracy and Availability

One can see that the probability for a cached record in
DoX being obsolete is significantly lower than standard DNS.
When N is large, a DoX network will observe almost no
obsolete records, thus achieving strong cache consistency.
Consequently, the accuracy and availability can be improved.
This is confirmed in Figure 13. With the increasing size of
DoX network size, the probability of sending obsolete records



to clients or having lookup failures due to obsolete records
becomes negligible.

2) Overhead: DoX peers incur additional messaging over-
head when verifying with peers for a record update. For each
update observed or notified by other peers, a peer send/receive
a verification request (in the form of < old → new >) to/from
M other peers. Note that this messaging overhead is incurred
only if there are modifications. Equation 21 gives the per-query
additional overhead incurred by DoX.

DoXO = 2×M × λM

λQ
(21)

Since the verification cache of DoX peers are flushed only
if storage limit is reached, DoX could use all the storage
available. However, this does not impose a practical concern
because (1) DoX can gracefully recover from flushed verifi-
cation cache and (2) storage does not pose a major constraint
for DNS cache as compared to Web cache, in which object
size are significantly larger.

3) Latency: DoX incurs additional latency only for the
first peer that notices the record update. In the worst case,
a verifying peer needs to traverse the entire delegation chain
(H levels) to verify a request. The upper bound of additional
latency incurred by DoX is:

DoXL =
H ×RTT

N
· λm

λQ
(22)

D. Comparison Between DNSSEC and DoX

Based on the above discussion, we can compare DNSSEC
and DoX in terms of QoDNS so that an informed decision can
be made by administrators.
• AP : Both DNSSEC and DoX can reduce the probability

of sending out poison records to zero, but based on differ-
ent assumptions. DNSSEC assumes safe key management
while DoX assumes the correctness of at least one peer.

• AO and VO: DNSSEC does not improve on these two
metrics while DoX can significantly reduce (improve)
them.

• OM : DNSSEC will incur at least 60% additional the
overhead. For DoX, this depends on the modification
process. If the arrival rate of modifications is 1/10 of that
of queries, and with a DoX network using node degree
of 3, the overhead is comparable with DNSSEC. But we
expect that the arrival rate of modifications is significantly
lower than that.

• LN : DNSSEC does not increase the latency directly.
DoX, although will not increase the average latency
significantly, might increase the worst case latency, which
is undesirable.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the notion of Quality of Domain
Name Service (QoDNS) as a comprehensive metric for evalu-
ating the existing DNS service and its proposed variants. The
QoDNS metric includes 4 crucial aspects of DNS, namely,
accuracy, availability, latency and overhead. We showed how
these parameters can be evaluated analytically for regular DNS

and two variants, namely DNSSEC and DoX. The analysis
provides insights into how various DNS parameters affect
QoDNS components. An important aspect of our work is the
analysis of cache poisoning propagation in the hierarchical
DNS structure, which is becoming an increasing concern.

The work in this paper can be extended along several
vectors. First, the analysis needs to be extended to non-Poisson
query arrival process and to the delegation structure of DNS.
Both of these are difficult, and approximations will likely
have to be explored. Second, the analysis can be extended
to other DNS proposals including those based on peer-to-peer
technology (e.g., Overlook [21], DDNS [22], CoDNS [23],
CoDoNS [24]). Third, a more thorough evaluation of QoDNS
via direct measurements would provide further insights into
the performance of various DNS variants.

REFERENCES

[1] A. S. Hughes and J. Touch, “Cross-domain cache cooperation for small
clients,” in Proc. Network Storage Symposium, 1999.

[2] S. M. Bellovin, “Using the domain name system for system break-ins,”
in Proc. 5th USENIX Security Symposium, 1995.

[3] I. Green, “DNS spoofing by the man in the middle,” http://www.sans.
org/rr/whitepapers/dns/1567.php, 2005.

[4] Netcraft Ltd., “DNS poisoning scam raises wariness of ’pharming’,”
http://news.netcraft.com/archives/2005/03/07/dns_poisoning_scam_
raises_wariness_of_pharming.html, 2005.

[5] K. Haugsness and the ISC Incident Handlers, “DNS cache poison-
ing detailed analysis report version 2,” http://isc.sans.org/presentations/
dnspoisoning.php, 2005.

[6] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS
Security Introduction and Requirements,” RFC 4033, 2005.

[7] G. Ateniese and S. Mangard, “A new approach to DNS security
(DNSSEC),” in Proc. 8th ACM Conference on Cmputer and Communi-
cations Security, 2001.

[8] L. Yuan, K. Kant, P. Mohapatra, and C.-N. Chuah, “DoX: A peer-to-peer
antidote for DNS cache poisoning attacks,” in Proc. IEEE ICC, 2006.

[9] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based
Internet Caches,” in Proc. IEEE INFOCOM, 2003.

[10] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE JSAC, 2002.

[11] Y. T. Hou, J. Pan, B. Li, and S. S. Panwar, “On expiration-based
hierarchical caching systems,” IEEE JSAC, 2004.

[12] O. Kolkman, “Measuring the resource requirements of DNSSEC,” RIPE
NCC / NLnet Labs, Tech. Rep. ripe-352, Sep 2005.

[13] R. Curtmola, A. D. Sorbo, and G. Ateniese, “On the performance and
analysis of dns security extensions,” in Proceedings of CANS, 2005.

[14] R. Naraine, “Massive ddos attack hit dns root servers,” http://www.
internetnews.com/dev-news/article.php/1486981, Oct 2002.

[15] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice-Hall,
1992.

[16] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching,” vol. 10, no. 5, 2002.

[17] “dmoz - open directory project,” http://www.dmoz.org.
[18] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, “Dynamic Updates in

the Domain Name System (DNS UPDATE),” RFC 2136, 1997.
[19] O. Gudmundsson, “DNSSEC and IPv6 A6 aware server/resolver mes-

sage size requirements,” RFC 3226, 2001.
[20] D. Eastlake 3rd, “RSA/SHA-1 SIGs and RSA KEYs in the Domain

Name System (DNS),” RFC 3110, 2001.
[21] M. Theimer and M. B. Jones, “Overlook: Scalable name service on an

overlay network,” in Proc. 22nd ICDCS, 2002.
[22] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving DNS using a

peer-to-peer lookup service,” in Proc. IPTPS, 2002.
[23] K. Park, V. Pai, L. Peterson, and Z. Wang, “CoDNS: Improving DNS

performance and reliability via cooperative lookups,” in Proc. 6th
Symposium on Operating Systems Design and Implementation, 2004.

[24] V. Ramasubramanian and E. G. Sirer, “The design and implementation
of a next generation name service for the internet,” in Proc. SIGCOMM,
Portland, Oregon, 2004.

http://www.sans.org/rr/whitepapers/dns/1567.php
http://www.sans.org/rr/whitepapers/dns/1567.php
http://news.netcraft.com/archives/2005/03/07/dns_poisoning_scam_raises_wariness_of_pharming.html
http://news.netcraft.com/archives/2005/03/07/dns_poisoning_scam_raises_wariness_of_pharming.html
http://isc.sans.org/presentations/dnspoisoning.php
http://isc.sans.org/presentations/dnspoisoning.php
http://www.internetnews.com/dev-news/article.php/1486981
http://www.internetnews.com/dev-news/article.php/1486981
http://www.dmoz.org

	Introduction
	Background and Related Work
	DNS Structure
	Related Work

	QoDNS Metrics
	Accuracy of DNS Resolutions
	Availability of DNS
	DNS Lookup Latency and Overhead
	Definition of QoDNS

	Analysis of Standard DNS
	Recursive Model for Query Arrival Characteristics
	Computational Issues and Estimation
	Stationary State Properties
	Evaluation of Performance Metrics
	Accuracy
	Unavailability
	Overhead
	Latency

	Validation of Analytic Results

	Study of Standard DNS
	Impact of TTL
	Is Dynamic DNS Bad?

	Study of Cache Poisoning and Solutions
	Poison Propagation in Regular DNS
	DNSSEC
	Accuracy and Availability
	Overhead and Latency

	DoX
	Accuracy and Availability
	Overhead
	Latency

	Comparison Between DNSSEC and DoX

	Conclusions and Future Work
	References

